

William J. Muldoon
Site Manager
Risk Management and Remediation
ConocoPhillips Company
P.O. Box 30198
Billings, MT 59107-0198
Phone 406.255.2672
william.j.muldoon@conocophillips.com

Ms. Laura Alvey Groundwater Remediation Program Remediation Division Montana Department of Environmental Quality P.O. Box 200901 Helena, MT 59620-0901

February 8, 2007

RE: November 2006 Groundwater Monitoring Report for Coulson Park Release Billings, Montana

Dear Ms. Alvey:

Attached is the November 2006 Groundwater Monitoring Report for the ConocoPhillips Coulson Park Release Site located in Billings, Montana. This site is being monitored annually. As with previous monitoring events, impacts were detected in monitoring wells MW-1 and MW-3. In general, the results are similar to previous monitoring events. Although there have been fluctuations in hydrocarbon concentrations over time, a significant decline in hydrocarbon concentrations has occurred since monitoring began in 2000. The data also indicate that natural attenuation processes are occurring at the site. The next groundwater monitoring event is scheduled for November 2007.

Please call me at 406-255-2672 if you have any questions regarding the enclosed report.

Sincerely,

William J. Muldoon

William J. Mildoor

Enc.

Cc: Tetra Tech



February 5, 2007

Mr. William J. Muldoon Site Manager-Central Region Risk Management and Remediation ConocoPhillips Company P.O. Box 30198 Billings, MT 59107-0198

**SUBJECT:** November 2006 Groundwater Monitoring Summary

Coulson Park 1976 Seminoe Pipe Line Release Site, Billings, Montana

ConocoPhillips Site No. 6625 Maxim Project No. 2000428A.200

Dear Mr. Muldoon:

This letter summarizes results of groundwater monitoring activities conducted by Tetra Tech (formerly Maxim Technologies) during November 2006 at the location of the Coulson Park 1976 Seminoe Pipe Line release in Billings, Montana (Figure 1). The site is on an annual monitoring schedule and the previous monitoring event was conducted during November 2005 (Maxim, 2006a).

This work was conducted in general accordance with Maxim's work plan for monitoring activities for the project (Maxim, 2006b). Activities conducted during the November 2006 annual groundwater monitoring event are as follows:

- Depth to groundwater was measured in seven site monitoring wells (MW-1 through MW-3 and CCP-MW-1 through CCP-MW-4; Figure 2).
- Field parameters, consisting of dissolved oxygen (DO), oxidation-reduction potential (ORP), temperature and pH, were measured in wells MW-1, MW-3, and CCP-MW-1. Groundwater samples were collected from these three wells in accordance with the methods described on the attached groundwater sampling logs (Attachment A). A duplicate groundwater sample was collected from well MW-3.
- The groundwater samples collected from wells MW-1 and MW-3 were submitted for laboratory analysis of volatile petroleum hydrocarbons (VPH) using Massachusetts Department of Environmental Protection (MDEP) methods (MDEP, 1998).
- The groundwater samples collected from wells MW-1, MW-3, and CCP-MW-1 were submitted for laboratory analysis of the following intrinsic biodegradation indicator (IBI) parameters: nitrate, sulfate, dissolved iron, dissolved manganese, and methane. Analytical reports are contained in Attachment B.

All measuring, sampling, packaging, shipping and documentation were completed in accordance with Maxim's standard operating procedures (SOPs), and all field activities were conducted in accordance with a site-specific health and safety plan (HASP) updated for 2006

monitoring activities. Lancaster Laboratories of Lancaster, Pennsylvania provided laboratory services.

#### **GROUNDWATER ELEVATIONS**

Depth to groundwater measurements ranged from approximately 12.2 to 16.3 feet at the Coulson Park site during November 2006 (Table 1). As all wells are completed with aboveground protectors extending approximately three feet above ground surface, groundwater was approximately nine to 13 feet below ground surface (bgs) during November 2006. Groundwater elevations were generally unchanged at the site between November 2005 and November 2006 (Table 1). Depth to groundwater has fluctuated within a range of approximately one foot since monitoring began in 2000 (Table 1).

The potentiometric surface map (Figure 2) indicates that groundwater flowed across the Coulson Park site toward the east-northeast under a gradient of approximately 0.5 percent during November 2006. The November 2006 flow direction and gradient are consistent with those observed during recent monitoring events (Maxim, 2005 and 2006a).

#### **GROUNDWATER ANALYTICAL DATA**

Groundwater samples were collected from well CCP-MW-1, representative of the area upgradient of the source, well MW-3, representative of the source area, and well MW-1, representative of the area down-gradient of the source.

#### Petroleum Hydrocarbon Concentrations

Petroleum hydrocarbon impacts were detected in wells MW-1 and MW-3 during the November 2006 monitoring event (Table 2; Attachment B). Several VPH analytes were detected in the sample collected from well MW-3, but only the benzene,  $C_5$ - $C_8$  aliphatics, and  $C_9$ - $C_{10}$  aromatics concentrations exceeded Montana Department of Environmental Quality (MDEQ) Risk-Based Screening Levels (RBSLs; MDEQ, 2003). Concentrations of total purgeable hydrocarbons (TPH) and  $C_5$ - $C_8$  aliphatics were detected in the sample from well MW-1, but these concentrations were J-flagged as estimated values by the laboratory because they fell between the method detection limit (MDL) and the limit of quantitation (LOQ), and these concentrations did not exceed MDEQ RBSLs (MDEQ, 2003) during November 2006.

Concentrations of petroleum hydrocarbons in the sample collected from well MW-3 increased, while concentrations in the sample from well MW-1 were generally unchanged between November 2005 and November 2006 (Table 2). However, since monitoring began in 2000, concentrations in well MW-3 (source area) have decreased by a factor of two to three and those in well MW-1 (downgradient) have decreased by an order of magnitude. The monitoring well network has delineated the extent of groundwater impacts. The restriction of petroleum hydrocarbon impacts in excess of MDEQ RBSLs to well MW-3, and the general overall decreasing level of impacts in both wells MW-1 and MW-3 (Table 2), indicate that the plume of impacted groundwater is stable and shrinking.

A duplicate sample was collected from well MW-3 for QA/QC purposes, and the results were evaluated using relative percent difference (RPD) according to MDEP criteria (MDEP, 1998). All analytes met the QA/QC criteria (RPD<50%) and are considered accurate concentrations.

Details of the duplicate sample QA/QC evaluation are presented in Attachment C.

In their internal laboratory QA/QC evaluation, Lancaster Laboratories (Lancaster) flagged several analyte results with a "J" because they were below their respective quantitation limits. All other internal laboratory QA/QC criteria were met, and all samples were shipped and received in accordance with standard QA/QC criteria (see Attachment C). All samples were received by the laboratory in satisfactory condition, the cooler temperature was received within the acceptable temperature range of  $2^{\circ}C_{\pm}$ , and all samples were adequately preserved to a pH of  $\leq 2$ . All analyses or original extractions were conducted within method-specific holding times.

#### Intrinsic Biodegradation Indicator Parameters

The IBI data collected from wells MW-1, MW-2 and CCP-MW-1 are summarized in Table 3. The DO data indicate that the shallow aquifer at the site is naturally oxygenated, although DO is depleted in the area of impacts. Iron, manganese and methane concentrations are all elevated within the impacted plume. Nitrate and sulfate concentrations are depleted within the impacted plume.

The IBI data suggest that aerobic biodegradation is occurring on the fringes of the dissolved-phase plume, but in the area of impacts, microaerophilic and/or anaerobic biodegradation is occurring through iron reduction, manganese reduction, nitrate reduction, sulfate reduction and methanogenesis. These mechanisms are considered to be the controlling factors in the stability of the plume.

#### **SUMMARY**

The data generated during the November 2006 groundwater monitoring event at the Coulson Park 1976 Seminoe Pipe Line release site may be summarized as follows:

- Groundwater elevations were essentially unchanged across the site between November 2005 and November 2006. Depth to groundwater measurements have fluctuated within a range of approximately one foot since monitoring began in 2000.
- Groundwater flow across the site was toward the east-northeast under a gradient of approximately 0.5 percent during November 2006. The November 2006 flow direction and gradient are consistent with those observed during previous monitoring events.
- VPH analytes were detected in source area well MW-3, but only the benzene, C<sub>5</sub>-C<sub>8</sub> aliphatics, and C<sub>9</sub>-C<sub>10</sub> aromatics concentrations exceeded MDEQ RBSLs. Petroleum hydrocarbons were detected in the sample from downgradient well MW-1 at concentrations below the LOQ.
- Since monitoring began in 2000, concentrations in well MW-3 (source area) have decreased by a factor of two to three and those in well MW-1 (downgradient) have decreased by an order of magnitude.
- The plume of impacted groundwater at the Coulson Park site is stable and petroleum hydrocarbon concentrations are decreasing as a result of natural biodegradation.

Please call us if you have any questions about this report or any aspect of the project. We appreciate the opportunity to serve your environmental consulting needs.

Sincerely,

**Tetra Tech** 

David L. Tyler, P.G. Project Manager

Brian H. McHugh, P.G. Office Manager

Buan Mc Heef

BHM/DLT/rr

**Figures** 

Figure 1 - Site Location Map

Figure 2 – Groundwater Contour Map, November 27, 2006

**Tables** 

Table 1 - Groundwater Elevation Data

Table 2 - Volatile Petroleum Hydrocarbon Concentrations in Groundwater

Table 3 - Intrinsic Biodegradation Indicator Data

Attachment A: Groundwater Sampling Logs Attachment B: Laboratory Analytical Reports

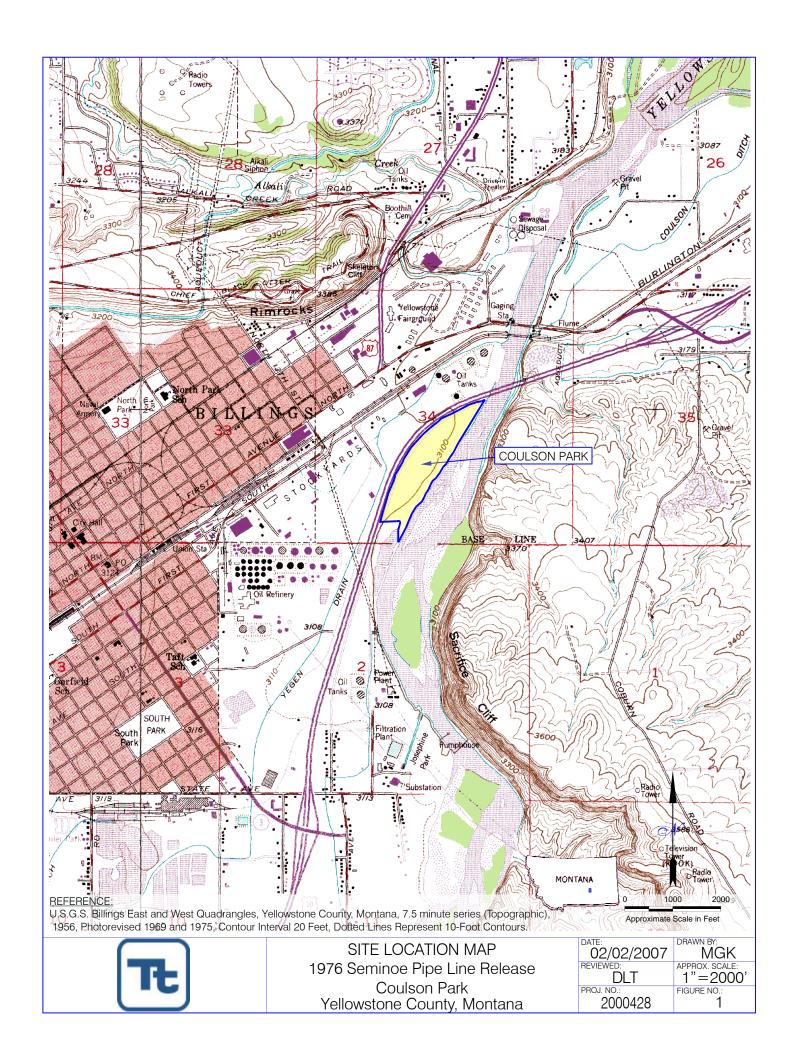
Attachment C: QA/QC Evaluation

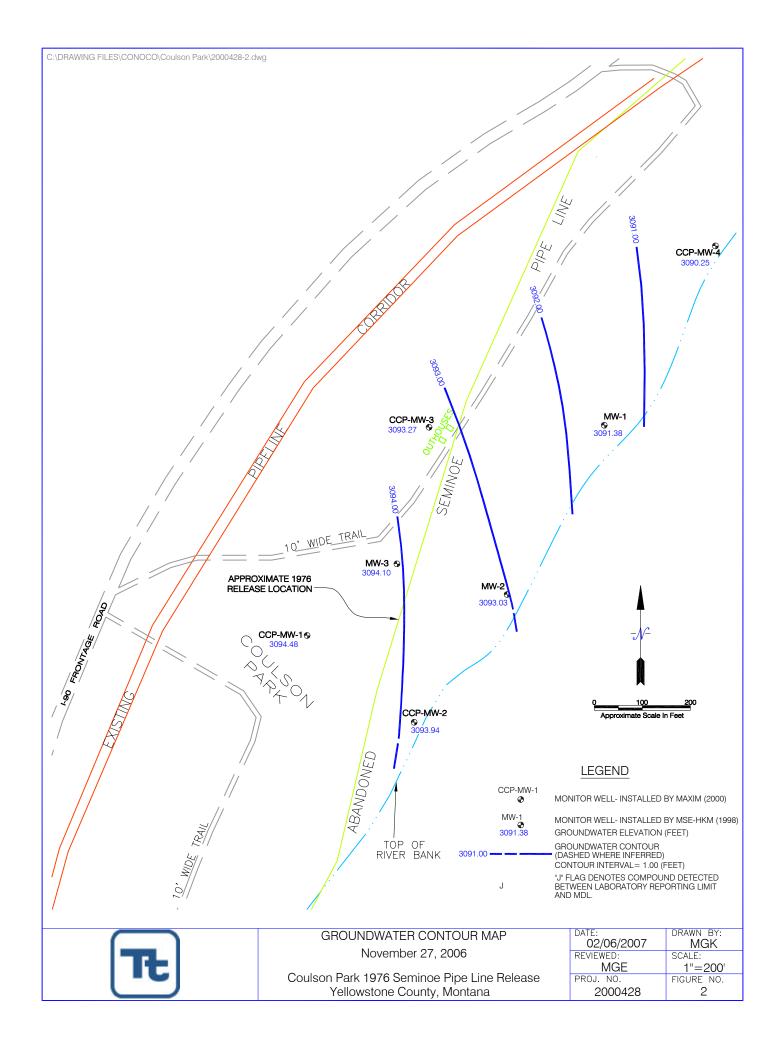
(in two copies)

n\typing\Env-fac\2000428A\Nov 2006 GWM Summary\CCP 2006 GMR Text.doc

#### REFERENCES

Maxim, 2005. November 2004 Groundwater Monitoring Summary, Coulson Park 1976 Seminoe Pipe Line Release Site, Billings, Montana. Report submitted to ConocoPhillips. January 14.


Maxim, 2006a. November 2005 Groundwater Monitoring Summary, Coulson Park 1976 Seminoe Pipe Line Release Site, Billings, Montana. Report submitted to ConocoPhillips. March 1.


Maxim, 2006b. 2003 Groundwater Monitoring Activities Work Plan, Coulson Park 1976 Seminoe Pipe Line Release Site, Billings, Montana. Work plan submitted to ConocoPhillips, September 19.

MDEP, 1998. Method for Determination of Volatile Petroleum Hydrocarbons (VPH), Massachusetts Department of Environmental Protection, January.

MDEQ, 2003. Montana Tier 1 Risk-Based Corrective Action Guidance for Petroleum Releases, Montana Department of Environmental Quality, Helena, MT, October

### **FIGURES**





### **TABLES**

#### Table 1 Groundwater Elevation Data Coulson Park 1976 Seminoe Pipe Line Release Billings, Montana

| Well ID and PVC Casing<br>Elevation (feet AMSL) <sup>1,2</sup> | Date     | Depth to Groundwater (feet) <sup>3</sup> | Groundwater Elevation<br>(feet AMSL) | Elevation Difference from<br>Previous Event<br>(feet) |
|----------------------------------------------------------------|----------|------------------------------------------|--------------------------------------|-------------------------------------------------------|
| CCP-MW-1                                                       | 04/13/00 | 15.05                                    | 3091.74                              |                                                       |
| 3106.79                                                        | 01/24/01 | 15.36                                    | 3091.43                              | -0.31                                                 |
|                                                                | 04/18/01 | 15.46                                    | 3091.33                              | -0.10                                                 |
|                                                                | 07/24/01 | 14.20                                    | 3092.59                              | 1.26                                                  |
|                                                                | 10/22/01 | 14.93                                    | 3091.86                              | -0.73                                                 |
|                                                                | 05/14/02 | 14.75                                    | 3092.04                              | 0.18                                                  |
|                                                                | 11/11/02 | 15.14                                    | 3091.65                              | -0.39                                                 |
|                                                                | 05/21/03 | 14.24                                    | 3092.55                              | 0.90                                                  |
|                                                                | 11/19/03 | 15.25                                    | 3091.54                              | -1.01                                                 |
|                                                                | 05/18/04 | 14.65                                    | 3092.14                              | 0.60                                                  |
|                                                                | 11/09/04 | 14.79                                    | 3092.00                              | -0.14                                                 |
| 3109.27                                                        | 11/17/05 | 14.84                                    | 3094.43                              | NA                                                    |
|                                                                | 11/27/06 | 14.79                                    | 3094.48                              | 0.05                                                  |
| CCP-MW-2                                                       | 04/13/00 | 13.61                                    | 3091.61                              |                                                       |
| 3105.22                                                        | 01/24/01 | 14.12                                    | 3091.10                              | -0.51                                                 |
|                                                                | 04/18/01 | 14.27                                    | 3090.95                              | -0.15                                                 |
|                                                                | 07/24/01 | 13.24                                    | 3091.98                              | 1.03                                                  |
|                                                                | 10/22/01 | 13.53                                    | 3091.69                              | -0.29                                                 |
|                                                                | 05/14/02 | 13.20                                    | 3092.02                              | 0.33                                                  |
|                                                                | 11/11/02 | 13.85                                    | 3091.37                              | -0.65                                                 |
|                                                                | 05/21/03 | 12.45                                    | 3092.77                              | 1.40                                                  |
|                                                                | 11/19/03 | 13.98                                    | 3091.24                              | -1.53                                                 |
|                                                                | 05/18/04 | 13.27                                    | 3091.95                              | 0.71                                                  |
|                                                                | 11/09/04 | 13.53                                    | 3091.69                              | -0.26                                                 |
| 3107.72                                                        | 11/17/05 | 13.66                                    | 3094.06                              | NA                                                    |
|                                                                | 11/27/06 | 13.78                                    | 3093.94                              | -0.12                                                 |
| CCP-MW-3                                                       | 04/13/00 | 16.78                                    | 3090.29                              |                                                       |
| 3107.07                                                        | 01/24/01 | 16.96                                    | 3090.11                              | -0.18                                                 |
|                                                                | 04/18/01 | 17.09                                    | 3089.98                              | -0.13                                                 |
|                                                                | 07/24/01 | 15.92                                    | 3091.15                              | 1.17                                                  |
|                                                                | 10/22/01 | 16.77                                    | 3090.30                              | -0.85                                                 |
|                                                                | 05/14/02 | 16.58                                    | 3090.49                              | 0.19                                                  |
|                                                                | 11/11/02 | 16.78                                    | 3090.29                              | -0.20                                                 |
|                                                                | 05/21/03 | 16.12                                    | 3090.95                              | 0.66                                                  |
|                                                                | 11/19/03 | 16.83                                    | 3090.24                              | -0.71                                                 |
|                                                                | 05/18/04 | 16.39                                    | 3090.68                              | 0.44                                                  |
|                                                                | 11/09/04 | 16.42                                    | 3090.65                              | -0.03                                                 |
| 3109.56                                                        | 11/17/05 | 16.40                                    | 3093.16                              | NA                                                    |
|                                                                | 11/27/06 | 16.29                                    | 3093.27                              | 0.11                                                  |
| CCD MW 4                                                       | 04/12/00 | 13.72                                    | 3086.98                              |                                                       |
| CCP-MW-4                                                       | 04/13/00 |                                          | 3080.98                              | 0.04                                                  |
| 3100.70                                                        | 01/24/01 | 13.68                                    | 3086.89                              | -0.13                                                 |
|                                                                | 04/18/01 | 13.81                                    | 3087.99                              | 1.10                                                  |
|                                                                | 07/24/01 | 12.71                                    | 3087.35                              | -0.64                                                 |
|                                                                | 10/22/01 | 13.35                                    | 3087.72                              | 0.37                                                  |
|                                                                | 05/14/02 | 12.98<br>13.19                           | 3087.72                              | -0.21                                                 |
| <del> </del>                                                   | 11/11/02 |                                          | 3088.98                              | 1.47                                                  |
| -                                                              | 05/21/03 | 11.72                                    | 3087.33                              | -1.65                                                 |
| <del> </del>                                                   | 11/19/03 | 13.37                                    | 3087.33                              | 0.68                                                  |
| -                                                              | 05/18/04 | 12.69                                    | 3087.85                              | -0.16                                                 |
| 2402.20                                                        | 11/09/04 | 12.85                                    | 3090.18                              | -0.16<br>NA                                           |
| 3103.20                                                        | 11/17/05 | 13.02                                    | 3090.18                              | 0.07                                                  |
|                                                                | 11/27/06 | 12.95                                    | 3030.23                              | 0.07                                                  |

#### Table 1 **Groundwater Elevation Data** Coulson Park 1976 Seminoe Pipe Line Release Billings, Montana

| Well ID and PVC Casing Elevation (feet AMSL) <sup>1,2</sup> | Date     | Depth to Groundwater (feet) <sup>3</sup> | Groundwater Elevation<br>(feet AMSL) | Elevation Difference from<br>Previous Event<br>(feet) |
|-------------------------------------------------------------|----------|------------------------------------------|--------------------------------------|-------------------------------------------------------|
| MW-1                                                        | 04/13/00 | 13.75                                    | 3088.46                              |                                                       |
| 3102.21                                                     | 01/24/01 | 13.81                                    | 3088.40                              | -0.06                                                 |
|                                                             | 04/18/01 | 14.01                                    | 3088.20                              | -0.20                                                 |
|                                                             | 07/24/01 | 13.47                                    | 3088.74                              | 0.54                                                  |
|                                                             | 10/22/01 | 13.73                                    | 3088.48                              | -0.26                                                 |
|                                                             | 05/14/02 | 13.53                                    | 3088.68                              | 0.20                                                  |
|                                                             | 11/11/02 | 13.66                                    | 3088.55                              | -0.13                                                 |
|                                                             | 05/21/03 | 12.96                                    | 3089.25                              | 0.70                                                  |
|                                                             | 11/19/03 | 13.71                                    | 3088.50                              | -0.75                                                 |
|                                                             | 05/18/04 | 13.36                                    | 3088.85                              | 0.35                                                  |
|                                                             | 11/09/04 | 13.39                                    | 3088.82                              | -0.03                                                 |
| 3104.69                                                     | 11/17/05 | 13.38                                    | 3091.31                              | NA                                                    |
|                                                             | 11/27/06 | 13.31                                    | 3091.38                              | 0.07                                                  |
| MW-2                                                        | 04/13/00 | 12.23                                    | 3090.47                              |                                                       |
| 3102.70                                                     | 01/24/01 | 12.51                                    | 3090.19                              | -0.28                                                 |
|                                                             | 04/18/01 | 12.66                                    | 3090.04                              | -0.15                                                 |
|                                                             | 07/24/01 | 11.87                                    | 3090.83                              | 0.79                                                  |
|                                                             | 10/22/01 | 12.16                                    | 3090.54                              | -0.29                                                 |
|                                                             | 05/14/02 | 11.87                                    | 3090.83                              | 0.29                                                  |
|                                                             | 11/11/02 | 12.29                                    | 3090.41                              | -0.42                                                 |
|                                                             | 05/21/03 | 11.42                                    | 3091.28                              | 0.87                                                  |
|                                                             | 11/19/03 | 13.37                                    | 3089.33                              | -1.95                                                 |
|                                                             | 05/18/04 | 11.78                                    | 3090.92                              | 1.59                                                  |
|                                                             | 11/09/04 | 11.98                                    | 3090.72                              | -0.20                                                 |
| 3105.19                                                     | 11/17/05 | 12.09                                    | 3093.10                              | NA                                                    |
|                                                             | 11/27/06 | 12.16                                    | 3093.03                              | -0.07                                                 |
| MW-3                                                        | 04/13/00 | 14.70                                    | 3091.36                              |                                                       |
| 3106.06                                                     | 01/24/01 | 15.01                                    | 3091.05                              | -0.31                                                 |
|                                                             | 04/18/01 | 15.11                                    | 3090.95                              | -0.10                                                 |
|                                                             | 07/24/01 | 13.90                                    | 3092.16                              | 1.21                                                  |
|                                                             | 10/22/01 | 14.60                                    | 3091.46                              | -0.70                                                 |
|                                                             | 05/14/02 | 14.31                                    | 3091.75                              | 0.29                                                  |
|                                                             | 11/11/02 | 14.79                                    | 3091.27                              | -0.48                                                 |
|                                                             | 05/21/03 | 13.83                                    | 3092.23                              | 0.96                                                  |
|                                                             | 11/19/03 | 14.87                                    | 3091.19                              | -1.04                                                 |
|                                                             | 05/18/04 | 14.24                                    | 3091.82                              | 0.63                                                  |
|                                                             | 11/09/04 | 14.44                                    | 3091.62                              | -0.20                                                 |
| 3108.55                                                     | 11/17/05 | 14.50                                    | 3094.05                              | NA                                                    |
|                                                             | 11/27/06 | 14.45                                    | 3094.10                              | 0.05                                                  |
|                                                             |          |                                          |                                      |                                                       |

<sup>1.</sup> AMSL = Above Mean Sea Level

<sup>2.</sup> Wells were resurveyed in September 2005, to coordinate survey data with that from the ConocoPhillips refinery. All groundwater elevations, beginning in 2005, are calculated using the new survey data

3. Depth to groundwater measured from the top of well casings, all of which are approximately 3 feet above ground surface.

(Concentrations in micrograms per liter)

| WellID   | Date             | Н    | Benzene | Toluene | Ethylbenzene | Xylenes | Total BTEX  | MTBE | Naphthalene | C <sub>5</sub> - C <sub>8</sub> Aliphatics | C <sub>9</sub> - C <sub>12</sub> Aliphatics | C <sub>9</sub> - C <sub>10</sub> Aromatics |
|----------|------------------|------|---------|---------|--------------|---------|-------------|------|-------------|--------------------------------------------|---------------------------------------------|--------------------------------------------|
| MDEQ R   | BSL <sup>A</sup> | NE   | 5       | 1,000   | 700          | 10,000  | NE          | 30   | 100         | 400                                        | 400                                         | 50 <sup>B</sup>                            |
|          | 04/13/00         | <500 | <1      | <1      | <1           | <3      | <6          | <2.0 | <2          | <240                                       | <100                                        | <60                                        |
|          | 01/24/01         | <20  | <0.50   | <0.50   | <0.50        | <0.50   | <2          | <2.0 | <1.0        | <20                                        | <20                                         | <20                                        |
|          | 04/13/01         | <20  | <0.50   | <0.50   | <0.50        | <0.50   | <2          | <2.0 | <1.0        | <20                                        | <20                                         | <20                                        |
|          | 07/24/01         | <20  | <0.50   | <0.50   | <0.50        | <0.50   | <2          | <2.0 | <1.0        | <20                                        | <20                                         | <20                                        |
|          | 10/22/01         | <20  | <0.50   | <0.50   | <0.50        | <0.50   | <2          | <2.0 | 1.7         | <20                                        | <20                                         | <20                                        |
| CCP-MW-1 | 05/14/02         | <20  | <0.50   | <0.50   | <0.50        | <0.50   | <2          | <2.0 | <1.0        | <20                                        | <20                                         | <20                                        |
|          | 05/21/03         | <200 | <1      | <1      | <1           | <3      | <6          | <2   | <2          | <100                                       | <100                                        | <20                                        |
|          | 05/18/04         |      |         |         |              |         | Not Sampled |      |             |                                            |                                             |                                            |
|          | 11/09/04         |      |         |         |              |         | Not Sampled |      |             |                                            |                                             |                                            |
|          | 11/17/05         |      |         |         |              |         | Not Sampled |      |             |                                            |                                             |                                            |
|          | 11/27/06         |      |         |         |              |         | Not Sampled |      |             |                                            |                                             |                                            |
|          |                  |      |         |         |              |         |             |      |             |                                            |                                             |                                            |
|          | 04/13/00         | <500 | <1      | <1      | <1           | <3      | <6          | <2.0 | <2          | <240                                       | <100                                        | <60                                        |
|          | 01/24/01         | <20  | <0.50   | <0.50   | <0.50        | <0.50   | <2          | <2.0 | <1.0        | <20                                        | <20                                         | <20                                        |
|          | 04/13/01         | <20  | <0.50   | <0.50   | <0.50        | <0.50   | <2          | <2.0 | 1.5         | <20                                        | <20                                         | <20                                        |
|          | 07/24/01         | <20  | <0.50   | <0.50   | <0.50        | <0.50   | <2          | <2.0 | <1.0        | <20                                        | <20                                         | <20                                        |
|          | 10/22/01         | <20  | <0.50   | <0.50   | <0.50        | <0.50   | <2          | <2.0 | <1.0        | <20                                        | <20                                         | <20                                        |
| CCP-MW-2 | 05/14/02         | <20  | <0.50   | <0.50   | <0.50        | <0.50   | <2          | <2.0 | <1.0        | <20                                        | <20                                         | <20                                        |
| 33 2     | 05/21/03         | <200 | <1      | <1      | <1           | <3      | <6          | <2   | <2          | <100                                       | <100                                        | <20                                        |
|          | 05/18/04         |      |         |         |              |         | Not Sampled |      |             |                                            |                                             |                                            |
|          | 11/09/04         |      |         |         |              |         | Not Sampled |      |             |                                            |                                             |                                            |
|          | 11/17/05         |      |         |         |              |         | Not Sampled |      |             |                                            |                                             |                                            |
|          | 11/27/06         |      |         |         |              |         | Not Sampled |      |             |                                            |                                             |                                            |
|          |                  |      |         |         |              |         |             |      |             |                                            |                                             |                                            |

(Concentrations in micrograms per liter)

| WellID   | Date             | НД   | Benzene | Toluene | Ethylbenzene | Xylenes | Total BTEX  | MTBE | Naphthalene | C <sub>5</sub> - C <sub>8</sub> Aliphatics | G <sub>9</sub> - G <sub>12</sub> Aliphatics | C <sub>9</sub> - C <sub>10</sub> Aromatics |
|----------|------------------|------|---------|---------|--------------|---------|-------------|------|-------------|--------------------------------------------|---------------------------------------------|--------------------------------------------|
| MDEQ R   | BSL <sup>A</sup> | NE   | 5       | 1,000   | 700          | 10,000  | NE          | 30   | 100         | 400                                        | 400                                         | 50 <sup>B</sup>                            |
|          | 04/13/00         | <500 | <1      | <1      | <1           | <3      | <6          | <2.0 | <2          | <240                                       | <100                                        | <60                                        |
|          | 01/24/01         | <20  | <0.50   | <0.50   | <0.50        | <0.50   | <2          | <2.0 | <1.0        | <20                                        | <20                                         | <20                                        |
|          | 04/12/01         | <20  | <0.50   | <0.50   | <0.50        | <0.50   | <2          | <2.0 | <1.0        | <20                                        | <20                                         | <20                                        |
|          | 07/24/01         | <20  | <0.50   | <0.50   | <0.50        | <0.50   | <2          | <2.0 | <1.0        | <20                                        | <20                                         | <20                                        |
|          | 07/24/01         | <20  | <0.50   | <0.50   | <0.50        | <0.50   | <2          | <2.0 | <1.0        | <20                                        | <20                                         | <20                                        |
|          | 10/22/01         | <20  | <0.50   | <0.50   | <0.50        | <0.50   | <2          | <2.0 | <1.0        | <20                                        | <20                                         | <20                                        |
| CCP-MW-3 | 05/14/02         | <20  | <0.50   | <0.50   | <0.50        | <0.50   | <2          | <2.0 | 1.4         | <20                                        | <20                                         | <20                                        |
|          | 05/21/03         | <200 | <1      | <1      | <1           | <3      | <6          | <2   | <2          | <100                                       | <100                                        | <20                                        |
|          | 5/21/2003 D      | <200 | <1      | <1      | <1           | <3      | <6          | <2   | <2          | <100                                       | <100                                        | <20                                        |
|          | 05/18/04         |      |         |         |              |         | Not Sampled |      |             |                                            |                                             |                                            |
|          | 11/09/04         |      |         |         |              |         | Not Sampled |      |             |                                            |                                             |                                            |
|          | 11/17/05         |      |         |         |              |         | Not Sampled |      |             |                                            |                                             |                                            |
|          | 11/27/06         |      | 1       |         |              |         | Not Sampled | 1    | 1           | 1                                          | 1                                           | ,                                          |
|          |                  |      |         |         |              |         |             |      |             |                                            |                                             |                                            |
|          | 04/13/00         | <500 | <1      | <1      | <1           | <3      | <6          | <2.0 | <2          | <240                                       | <100                                        | <60                                        |
|          | 01/24/01         | <20  | <0.50   | <0.50   | <0.50        | <0.50   | <2          | <2.0 | <1.0        | <20                                        | <20                                         | <20                                        |
|          | 04/13/01         | <20  | <0.50   | <0.50   | <0.50        | <0.50   | <2          | <2.0 | <1.0        | <20                                        | <20                                         | <20                                        |
|          | 07/24/01         | <20  | <0.50   | <0.50   | <0.50        | <0.50   | <2          | <2.0 | 1.7         | <20                                        | <20                                         | <20                                        |
|          | 10/22/01         | <20  | <0.50   | <0.50   | <0.50        | <0.50   | <2          | <2.0 | <1.0        | <20                                        | <20                                         | <20                                        |
| CCP-MW-4 | 05/14/02         | <20  | <0.50   | <0.50   | <0.50        | <0.50   | <2          | <2.0 | <1.0        | <20                                        | <20                                         | <20                                        |
|          | 05/21/03         | <200 | <1      | <1      | <1           | <3      | <6          | <2   | <2          | <100                                       | <100                                        | <20                                        |
|          | 05/18/04         | <200 | <1      | <1      | <1           | <3      | <6          | <2   | <5          | <100                                       | <100                                        | <20                                        |
|          | 11/09/04         |      |         |         |              |         | Not Sampled |      |             |                                            |                                             |                                            |
|          | 11/17/05         |      |         |         |              |         | Not Sampled |      |             |                                            |                                             |                                            |
|          | 11/27/06         |      | 1       |         | T            |         | Not Sampled | T    | T           | T                                          | T                                           | T                                          |
|          |                  |      |         |         |              |         |             |      |             |                                            |                                             |                                            |

(Concentrations in micrograms per liter)

| Well ID | Date              | ТРН      | Benzene   | Toluene     | Ethylbenzene | Xylenes     | Total BTEX   | MTBE       | Naphthalene | C <sub>5</sub> - C <sub>8</sub> Aliphatics | C <sub>9</sub> - C <sub>12</sub> Aliphatics | C <sub>9</sub> - C <sub>10</sub> Aromatics |
|---------|-------------------|----------|-----------|-------------|--------------|-------------|--------------|------------|-------------|--------------------------------------------|---------------------------------------------|--------------------------------------------|
| MDEQ F  | RBSL <sup>A</sup> | NE       | 5         | 1,000       | 700          | 10,000      | NE           | 30         | 100         | 400                                        | 400                                         | 50 <sup>B</sup>                            |
|         | 04/13/00          | 1,500    | 6         | 1           | 106          | <3          | 113          | <2.0       | 25          | 830                                        | <100                                        | 270                                        |
|         | 01/24/01          | 810      | 6.6       | 1.6         | 40           | 1.7         | 49.9         | 7.6        | 22          | 520                                        | 61                                          | 130                                        |
|         | 04/12/01          | 1,100    | 9.3 (8.0) | 2.3 (2.0)   | 48 (52)      | 2.4 (<1.0)  | 62 (62)      | 16 (<1.0)  | 31          | 810                                        | 85                                          | 200                                        |
|         | 07/24/01          | 620      | 6.7 (6.2) | 0.88 (<1.0) | 20 (21)      | 0.67 (<1.0) | 28.25(27.2)  | 12 (<1.0)  | 6.9         | 450                                        | 74                                          | 84                                         |
|         | 10/22/01          | 450      | 6.0 (6.0) | 1.3 (<1.0)  | 5.8 (6.4)    | 0.77 (<2.0) | 13.87 (12.4) | 9.4 (<1.0) | 8.7         | 330                                        | 24                                          | 93                                         |
|         | 05/14/02          | 390      | 3.1       | 0.81        | 1.6          | <0.50       | 5.51         | 5.7        | 5.8         | 290                                        | 21                                          | 60                                         |
|         | 11/11/02          | 280      | 2.9       | 1.2         | 23           | 1.1         | 28           | <2.0       | 7.1         | 140                                        | 37                                          | 54                                         |
| MW-1    | 05/21/03          | 310      | 1         | <1          | 10           | <3          | 11           | <2         | 9           | 230                                        | <100                                        | 71                                         |
|         | 11/19/03          | 382      | 4.04      | 2.13 (J)    | 2.64 (J)     | 2.39 (J)    | 11.20        | <2.00      | 16.5        | 226                                        | 75.2 (J)                                    | 70 (J)                                     |
|         | 11/19/03 D        | 283      | 3.29      | 1.75 (J)    | 1.14 (J)     | 1.81 (J)    | 7.99         | <2.00      | 13.1        | 159                                        | 60.5 (J)                                    | 54.8 (J)                                   |
|         | 05/18/04          | 460      | 2         | <1          | 3            | <3          | 5            | <2         | 6           | 410                                        | <100                                        | 71                                         |
|         | 11/09/04          | 349      | 2.87      | 1.31 (J)    | 0.6 (J)      | <1          | 4.78         | <2         | 5.3         | 204                                        | 56.3 (J)                                    | 82.6 (J)                                   |
|         | 11/17/05          | 86.4 (J) | 1.47      | 0.9 (J)     | <0.5         | <1.0        | 2.37         | <2         | <1.0 (J)    | <50                                        | <20                                         | <20                                        |
|         | 11/17/05 D        | 84.9 (J) | 1.39      | 0.8 (J)     | <0.5         | 1.10 (J)    | 3.29         | <2         | 2.82 (J)    | <50                                        | <20                                         | 20.8 (J)                                   |
|         | 11/27/06          | 96.6 (J) | <0.5      | <0.5        | <0.5         | <1          | <2.5         | <2         | <1          | 71.4 (J)                                   | <20                                         | <20                                        |
|         |                   |          |           |             |              |             |              |            |             |                                            |                                             |                                            |
|         | 04/13/00          | <500     | <1        | <1          | <1           | <3          | <6           | <2.0       | <2          | <240                                       | <100                                        | <60                                        |
|         | 01/24/01          | <20      | <0.50     | <0.50       | <0.50        | <0.50       | <2           | <2.0       | <1.0        | <20                                        | <20                                         | <20                                        |
|         | 04/13/01          | <20      | <0.50     | <0.50       | <0.50        | <0.50       | <2           | <2.0       | <1.0        | <20                                        | <20                                         | <20                                        |
|         | 07/24/01          | 25       | <0.50     | <0.50       | <0.50        | <0.50       | <2           | <2.0       | <1.0        | <20                                        | <20                                         | <20                                        |
|         | 10/22/01          | <20      | <0.50     | <0.50       | <0.50        | <0.50       | <2           | <2.0       | <1.0        | <20                                        | <20                                         | <20                                        |
| MW-2    | 05/14/02          | 28       | <0.50     | <0.50       | <0.50        | <0.50       | <2           | <2.0       | 1.1         | 20                                         | <20                                         | <20                                        |
|         | 05/21/03          | <200     | <1        | <1          | <1           | <3          | <6           | <2         | <2          | <100                                       | <100                                        | <20                                        |
|         | 05/18/04          | <200     | <1        | <1          | <1           | <3          | <6           | <2         | <5          | <100                                       | <100                                        | <20                                        |
|         | 11/09/04          |          |           |             |              |             | Not Sampled  |            |             |                                            |                                             |                                            |
|         | 11/17/05          |          |           |             |              |             | Not Sampled  |            |             |                                            |                                             |                                            |
|         | 11/27/06          |          | ı         |             |              | 1           | Not Sampled  |            |             | ı                                          | 1                                           |                                            |
|         |                   |          |           |             |              |             |              |            |             |                                            |                                             |                                            |

(Concentrations in micrograms per liter)

| WellID | Date              | Н     | Benzene   | Toluene   | Ethylbenzene | Xylenes   | Total BTEX    | MTBE      | Naphthalene | C <sub>5</sub> - C <sub>8</sub> Aliphatics | C <sub>9</sub> - C <sub>12</sub> Aliphatics | C <sub>9</sub> - C <sub>10</sub> Aromatics |
|--------|-------------------|-------|-----------|-----------|--------------|-----------|---------------|-----------|-------------|--------------------------------------------|---------------------------------------------|--------------------------------------------|
| MDEQ F | RBSL <sup>A</sup> | NE    | 5         | 1,000     | 700          | 10,000    | NE            | 30        | 100         | 400                                        | 400                                         | <b>50</b> <sup>B</sup>                     |
|        | 04/13/00          | 3,600 | 568       | 8         | 221          | 47        | 844           | <10       | 10          | 2,000                                      | 130                                         | 500                                        |
|        | 01/24/01          | 2,800 | 460       | 9         | 140          | 26        | 635           | 35        | 9.2         | 1,700                                      | 180                                         | 320                                        |
|        | 01/24/01 D        | 2,900 | 460       | 11        | 140          | 28        | 639           | 37        | 7.8         | 1,800                                      | 190                                         | 330                                        |
|        | 04/12/01          | 1,600 | 190 (170) | 4.2 (4.4) | 70 (82)      | 9.7 (12)  | 273.9 (268.4) | 27 (<2.0) | 3.9         | 1,100                                      | 94                                          | 210                                        |
|        | 04/12/01 D        | 1,300 | 140       | 3.8       | 54           | 6.2       | 204           | 21        | 3.2         | 930                                        | 93                                          | 180                                        |
|        | 07/24/01          | 2,900 | 580 (580) | 7.2 (<10) | 130 (140)    | 11 (10)   | 728(730)      | 29 (<10)  | 9.1         | 1,700                                      | 280                                         | 450                                        |
|        | 10/22/01          | 1,000 | 90 (85)   | 2.2 (1.2) | 27 (29)      | 2.6 (2.8) | 121.8 (118)   | 18 (<1)   | 2.6         | 750                                        | 62                                          | 160                                        |
|        | 10/22/01 D        | 900   | 77        | 2.1       | 22           | 2.2       | 103.3         | 15        | 1.8         | 670                                        | 65                                          | 140                                        |
|        | 05/14/02          | 700   | 58        | 1.6       | 15           | 1.4       | 76            | 5.6 (J)   | 4.0 (J)     | 450                                        | 30                                          | 120                                        |
|        | 05/14/02 D        | 770   | 67        | 2.0       | 17           | 1.5       | 87.5          | 8.9 (J)   | 1.8 (J)     | 500                                        | 37                                          | 120                                        |
| MW-3   | 11/11/02          | 1,500 | 230       | 3.3       | 75           | 4.1 (J)   | 308.3         | 16        | 4.7         | 760                                        | 160                                         | 240                                        |
|        | 11/11/02 D        | 1,500 | 230       | 3.5       | 79           | 5.9 (J)   | 312.5         | 16        | 5.2         | 760                                        | 170                                         | 240                                        |
|        | 05/21/03          | 380   | 25        | <1        | 5            | <3        | 30            | <1        | <2          | 270                                        | <100                                        | 75                                         |
|        | 11/19/03          | 1,160 | 149       | 2.64 (J)  | 21.1         | 1.60 (J)  | 174           | <2.00     | 2.70 (J)    | 617                                        | 188                                         | 181                                        |
|        | 05/18/04          | 530   | 81        | 1         | 6            | <3        | 88            | <2        | <5          | 360                                        | <100                                        | 93                                         |
|        | 5/18/04 D         | 600   | 84        | 1         | 7            | <3        | 92            | <2        | <5          | 420                                        | <100                                        | 100                                        |
|        | 11/09/04          | 496   | 70.9      | 1.28 (J)  | 1.59 (J)     | <1        | 73.8          | <2        | 1.18 (J)    | 255                                        | 65.9 (J)                                    | 101                                        |
|        | 11/09/04 D        | 497   | 71.1      | 1.27 (J)  | 1.64 (J)     | <1        | 74            | <2        | 1.10 (J)    | 255                                        | 66.6 (J)                                    | 101                                        |
|        | 11/17/05          | 782   | 127       | 1.81 (J)  | 1.35 (J)     | 1.30 (J)  | 131.45        | 3.67 (J)  | 2.80 (J)    | 431                                        | 82.3 (J)                                    | 133                                        |
|        | 11/27/06          | 1,140 | 249       | 2.52 (J)  | 2.58 (J)     | 1.52 (J)  | 255.62        | <2        | 3.49 (J)    | 621                                        | 100                                         | 167                                        |
|        | 11/27/06 D        | 1,150 | 243       | 2.46 (J)  | 2.50 (J)     | 1.59 (J)  | 249.55        | <2        | 2.69 (J)    | 644                                        | 93.1 (J)                                    | 161                                        |
|        |                   |       |           |           |              |           |               |           |             |                                            |                                             |                                            |

A: RBSL, Risk-Based Screening Level, Montana Tier 1 Risk-Based Corrective Action Guidance for Petroleum Releases. Montana Department of Environmental Quality, Helena, MT, October, 2003.

Bold text indicates exceedance of Risk Based Screening Levels.

B: The RBSL for the C<sub>9</sub>-C<sub>10</sub> Aromatics was lowered from 100 ug/L to 50 ug/L in October, 2003. Therefore, values exceeding 50 ug/L are bolded only after that date.

NE: RBSL not established.

<sup>( )</sup> Concentrations in parentheses are results of 8260B second method confirmation analysis.

<sup>(</sup>J): Estimated Value = The result falls within the Method Detection Limit (MDL) and Limit of Quantitation (LOQ).

D = duplicate

Table 3 Intrinsic Biodegradation Indicator Data Coulson Park 1976 Seminoe Pipe Line Release Billings, Montana

| Well ID        | Date     | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | Temperature<br>(°C) | Н    | Nitrate as N<br>(mg/L) | Sulfate<br>(mg/L) | Dissolved Iron<br>(mg/L) | Dissolved<br>Manganese<br>(mg/L) | Methane<br>(µg/L) |
|----------------|----------|-------------------------------|----------------------------------------------|---------------------|------|------------------------|-------------------|--------------------------|----------------------------------|-------------------|
|                | 04/13/00 | 0.00                          | -445                                         | 12.4                | 7.04 | NA                     | NA                | NA                       | NA                               | NA                |
|                | 01/24/01 | 0.50                          | 19.2                                         | 11.5                | 6.76 | NA                     | NA                | NA                       | NA                               | NA                |
|                | 04/13/01 | 1.06                          | 187                                          | 10.5                | 7.59 | NA                     | NA                | NA                       | NA                               | NA                |
|                | 07/24/01 | 0.74                          | -42.7                                        | 12.8                | 7.01 | NA                     | NA                | NA                       | NA                               | NA                |
| CCP-MW-1       | 10/22/01 | 0.00                          | 2.0                                          | 26.1                | 7.10 | NA                     | NA                | NA                       | NA                               | NA                |
| Up-gradient    | 05/14/02 | 1.47                          | 81.7                                         | 10.5                | 7.60 | NA                     | NA                | NA                       | NA                               | NA                |
|                | 05/21/03 | 1.09                          | 113                                          | 10.9                | 7.35 | NA                     | NA                | NA                       | NA                               | NA                |
|                | 11/09/04 |                               |                                              |                     |      | Not Sampled            |                   |                          |                                  |                   |
|                | 11/17/05 |                               |                                              |                     |      | Not Sampled            |                   |                          |                                  |                   |
|                | 11/27/06 | 1.96                          | 129.4                                        | 12.9                | 6.74 | 0.37                   | 336               | <0.05                    | 0.0987                           | <2                |
|                |          |                               |                                              |                     |      |                        |                   |                          |                                  |                   |
|                | 04/13/00 | 0.00                          | -33.0                                        | 13.6                | 6.83 | NA                     | NA                | NA                       | NA                               | NA                |
|                | 01/24/01 | 0.11                          | -40.6                                        | 12.6                | 6.79 | NA                     | NA                | NA                       | NA                               | NA                |
|                | 04/13/01 | 0.00                          | -61                                          | 11.3                | 7.37 | NA                     | NA                | NA                       | NA                               | NA                |
|                | 07/24/01 | 0.00                          | -51.4                                        | 13.5                | 6.87 | NA                     | NA                | NA                       | NA                               | NA                |
| CCP-MW-2       | 10/22/01 | 0.00                          | -41.4                                        | 13.4                | 7.21 | NA                     | NA                | NA                       | NA                               | NA                |
| Cross-gradient | 05/14/02 | 0.18                          | 14.4                                         | 11.3                | 7.33 | NA                     | NA                | NA                       | NA                               | NA                |
| Grood gradient | 05/21/03 | 0.51                          | 148                                          | 11.6                | 6.71 | NA                     | NA                | NA                       | NA                               | NA                |
|                | 11/09/04 |                               |                                              |                     |      | Not Sampled            |                   |                          |                                  |                   |
|                | 11/17/05 |                               |                                              |                     |      | Not Sampled            |                   |                          |                                  |                   |
|                | 11/27/06 |                               |                                              |                     |      | Not Sampled            |                   |                          |                                  |                   |
|                |          |                               |                                              |                     |      |                        |                   |                          |                                  |                   |
|                | 04/13/00 | 4.35                          | 91.0                                         | 12.1                | 6.95 | <5.0                   | 396               | <0.05                    | 0.015                            | <0.001            |
|                | 01/24/01 | 5.57                          | 39.2                                         | 11.4                | 7.09 | <0.5                   | 355               | <0.05                    | <0.01                            | <0.5              |
|                | 04/12/01 | 5.69                          | 87                                           | 10.1                | 7.53 | 0.09                   | 324               | <0.05                    | <0.01                            | <0.5              |
|                | 07/24/01 | 0.75                          | 9.9                                          | 12.1                | 7.13 | <0.5                   | 366               | <0.05                    | <0.01                            | <0.5              |
|                | 10/22/01 | 6.21                          | 61.4                                         | 13.8                | 7.43 | <0.5                   | 360               | 0.14                     | <0.01                            | <0.5              |
| CCP-MW-3       | 05/14/02 | 2.42                          | 121                                          | 10.1                | 7.55 | <0.5                   | 333               | < 0.05                   | <0.01                            | <0.5              |
| Background     | 05/21/03 | 2.22                          | 119                                          | 10.4                | 7.21 | 0.08                   | 381               | <0.05                    | <0.02                            | <1.0              |
|                | 05/18/04 | 3.82                          | 51.3                                         | 10.9                | 7.27 | 0.11                   | 385               | < 0.05                   | <0.02                            | <2                |
|                | 11/09/04 |                               |                                              | -                   |      | Not Sampled            |                   |                          |                                  |                   |
|                | 11/17/05 | 6.96                          | -103.7                                       | 12.8                | 7.17 | <0.015                 | 425               | < 0.038                  | <0.00096                         | <2                |
|                | 11/27/06 |                               |                                              |                     |      | Not Sampled            |                   |                          |                                  |                   |
|                |          |                               |                                              | _                   |      |                        |                   |                          |                                  |                   |

Table 3 Intrinsic Biodegradation Indicator Data Coulson Park 1976 Seminoe Pipe Line Release Billings, Montana

| Well ID        | Date     | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | Temperature<br>(°C) | 됩    | Nitrate as N<br>(mg/L) | Sulfate<br>(mg/L) | Dissolved Iron<br>(mg/L) | Dissolved<br>Manganese<br>(mg/L) | Methane<br>(µg/L) |  |
|----------------|----------|-------------------------------|----------------------------------------------|---------------------|------|------------------------|-------------------|--------------------------|----------------------------------|-------------------|--|
|                | 04/13/00 | 0.10                          | 70.0                                         | 11.9                | 6.87 | NA                     | NA                | NA                       | NA                               | NA                |  |
|                | 01/24/01 | 0.36                          | 115                                          | 10.4                | 6.68 | NA                     | NA                | NA                       | NA                               | NA                |  |
|                | 04/13/01 | 1.23                          | 126                                          | 9.6                 | 7.30 | NA                     | NA                | NA                       | NA                               | NA                |  |
|                | 07/24/01 | 0.97                          | 165                                          | 14.8                | 7.19 | NA                     | NA                | NA                       | NA                               | NA                |  |
|                | 10/22/01 | 1.64                          | 122                                          | 15.9                | 6.89 | NA                     | NA                | NA                       | NA                               | NA                |  |
| CCP-MW-4       | 05/14/02 | 0.96                          | 90.0                                         | 10.1                | 7.40 | NA                     | NA                | NA                       | NA                               | NA                |  |
| Down-gradient  | 05/21/03 | 1.17                          | 120                                          | 10.7                | 7.22 | NA                     | NA                | NA                       | NA                               | NA                |  |
|                | 05/18/04 | 2.94                          | 57.8                                         | 11.5                | 7.11 | NA                     | NA                | NA                       | NA                               | NA                |  |
|                | 11/09/04 |                               |                                              |                     |      | Not Sampled            |                   |                          |                                  |                   |  |
|                | 11/17/05 |                               | Not Sampled                                  |                     |      |                        |                   |                          |                                  |                   |  |
|                | 11/27/06 |                               |                                              |                     |      | Not Sampled            |                   |                          |                                  |                   |  |
|                |          |                               |                                              |                     |      |                        |                   |                          |                                  |                   |  |
|                | 04/13/00 | 0.00                          | -140                                         | 13.7                | 6.74 | <0.5                   | 206               | 9.4                      | 0.76                             | 2.1               |  |
|                | 01/24/01 | 0.74                          | -98.1                                        | 11.9                | 7.06 | <0.5                   | 21.7              | 11.3                     | 0.72                             | 2,700             |  |
|                | 04/12/01 | 0.00                          | -158                                         | 11.6                | 7.08 | <0.05                  | 26                | 10.7                     | 0.76                             | 3,400             |  |
|                | 07/24/01 | 0.15                          | -204                                         | 12.7                | 6.70 | <0.5                   | 55.8              | 5.1                      | 0.64                             | 1,000             |  |
|                | 10/22/01 | 0.00                          | 9.3                                          | 15.5                | 7.03 | <0.5                   | 36.6              | 13                       | 0.77                             | 810               |  |
|                | 05/14/02 | 0.29                          | -123                                         | 12.0                | 7.16 | <0.5                   | 122               | 15                       | 1.1                              | 390               |  |
| MW-1           | 11/11/02 | 0.44                          | -151                                         | 14.7                | 7.20 | NA                     | NA                | NA                       | NA                               | NA                |  |
| Down-gradient  | 05/21/03 | 0.20                          | 137                                          | 11.8                | 6.91 | <0.05                  | 602               | 1.96                     | 0.87                             | 175               |  |
|                | 11/19/03 | 0.52                          | 24.5                                         | 15.4                | 7.82 | NA                     | NA                | NA                       | NA                               | NA                |  |
|                | 05/18/04 | 0.76                          | 66.9                                         | 12.1                | 6.90 | < 0.05                 | 377               | 6.5                      | 0.88                             | 950               |  |
|                | 11/09/04 | 0.28                          | -224.0                                       | 15.8                | 7.29 | NA                     | NA                | NA                       | NA                               | NA                |  |
|                | 11/17/05 | 9.77                          | -177.9                                       | 14.0                | 6.92 | <0.015                 | 18                | 10.4                     | 0.683                            | NA                |  |
|                | 11/27/06 | 0.26                          | -88.4                                        | 13.7                | 6.81 | <0.04                  | 700               | 8.88                     | 0.795                            | 1,100             |  |
|                |          |                               |                                              |                     |      |                        |                   |                          |                                  |                   |  |
|                | 04/13/00 | 0.00                          | -118                                         | 12.2                | 6.87 | NA                     | NA                | NA                       | NA                               | NA                |  |
|                | 01/24/01 | 0.00                          | -3.1                                         | 11.4                | 6.67 | NA                     | NA                | NA                       | NA                               | NA                |  |
|                | 04/13/01 | 0.00                          | -149                                         | 10.9                | 7.43 | NA                     | NA                | NA                       | NA                               | NA                |  |
|                | 07/24/01 | 0.00                          | -135                                         | 13.3                | 7.04 | NA                     | NA                | NA                       | NA                               | NA                |  |
|                | 10/22/01 | 0.00                          | -126                                         | 14.7                | 7.30 | NA                     | NA                | NA                       | NA                               | NA                |  |
| MW-2           | 05/14/02 | 0.35                          | -72.1                                        | 11.2                | 7.14 | NA                     | NA                | NA                       | NA                               | NA                |  |
| Cross-gradient | 05/21/03 | 0.48                          | 132                                          | 12.7                | 7.00 | NA                     | NA                | NA                       | NA                               | NA                |  |
|                | 05/18/04 | 0.05                          | 76.4                                         | 11.5                | 6.74 | <0.05                  | 374               | 1.53                     | 1.52                             | 12                |  |
|                | 11/09/04 |                               |                                              |                     |      | Not Sampled            |                   |                          |                                  |                   |  |
|                | 11/17/05 | 0.48                          | 175                                          | 13.5                | 6.95 | <0.015                 | 319               | 2.56                     | 1.05                             | 6.1               |  |
|                | 11/27/06 |                               |                                              |                     |      | Not Sampled            |                   |                          |                                  |                   |  |
|                |          |                               |                                              |                     |      |                        |                   |                          |                                  |                   |  |

Table 3
Intrinsic Biodegradation Indicator Data
Coulson Park 1976 Seminoe Pipe Line Release
Billings, Montana

| Well ID  | Date     | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | Temperature<br>(°C) | Ħ    | Nitrate as N<br>(mg/L) | Sulfate<br>(mg/L) | Dissolved Iron<br>(mg/L) | Dissolved<br>Manganese<br>(mg/L) | Methane<br>(µg/L) |
|----------|----------|-------------------------------|----------------------------------------------|---------------------|------|------------------------|-------------------|--------------------------|----------------------------------|-------------------|
|          | 04/13/00 | 0.00                          | -224                                         | 13.0                | 7.85 | <0.5                   | 113               | 0.25                     | 0.063                            | 3.7               |
|          | 01/24/01 | 0.94                          | -140                                         | 12.3                | 7.69 | <0.5                   | 71.1              | 0.53                     | 0.072                            | 2,700             |
|          | 04/12/01 | 0.00                          | -316                                         | 11.2                | 8.38 | <0.05                  | 112               | 0.13                     | 0.058                            | 420               |
|          | 07/24/01 | 0.00                          | -197                                         | 13.8                | 7.15 | <0.5                   | 11.1              | 6.4                      | 0.17                             | 2,600             |
|          | 10/22/01 | 0.00                          | -212                                         | 14.7                | 7.06 | <0.5                   | 178               | 0.93                     | 0.091                            | 900               |
|          | 05/14/02 | 0.07                          | -233                                         | 12.2                | 7.18 | <0.5                   | 263               | 5.5                      | 0.23                             | 660               |
| MW-3     | 11/11/02 | 1.68                          | -263                                         | 14.7                | 8.05 | NA                     | NA                | NA                       | NA                               | NA                |
| Impacted | 05/21/03 | 0.40                          | 76.1                                         | 12.3                | 8.01 | <0.05                  | 252               | 0.58                     | 0.14                             | 221               |
|          | 11/19/03 | 0.52                          | 6.5                                          | 15.4                | 8.24 | NA                     | NA                | NA                       | NA                               | NA                |
|          | 05/18/04 | 0.62                          | 44.1                                         | 12.2                | 7.38 | NA                     | NA                | NA                       | NA                               | NA                |
|          | 11/09/04 | 0.28                          | -272.0                                       | 15.8                | 7.76 | NA                     | NA                | NA                       | NA                               | NA                |
|          | 11/17/05 | NM                            | -208.0                                       | 13.7                | 7.36 | NA                     | NA                | NA                       | NA                               | NA                |
|          | 11/27/06 | 0.12                          | -170.6                                       | 13.1                | 7.17 | <0.04                  | 93.5              | 8.46                     | 0.116                            | 2,000             |
|          |          |                               |                                              |                     |      |                        |                   |                          |                                  |                   |

mg/L: milligrams per liter mV: millivolts

<sup>0</sup>C: Degrees Centigrade NA: Not analyzed μg/L: micrograms per liter

# ATTACHMENT A GROUNDWATER SAMPLING LOGS

| Project:                              |                                                              | K Bampla Data: 11/21<br>ZHAWK                                              | -                                                |                                                      | Well ID:                              |           |
|---------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------|---------------------------------------|-----------|
| Casing Diamet                         |                                                              |                                                                            | Weether                                          | NOIZTH                                               |                                       |           |
| -                                     | et below measuring point):                                   |                                                                            | Depth to Water                                   | 13.3)                                                | ft water                              |           |
|                                       | n below messaling parky                                      |                                                                            |                                                  | 7.7                                                  | n                                     | Γ'        |
| Screen:                               | <u> </u>                                                     |                                                                            | Depth to Product                                 |                                                      |                                       |           |
| J-TUBE: YES                           | or(NG) If yee indicate the d                                 | aph below static water the tube wee                                        | raised to Before Sarry                           | Ang:                                                 |                                       |           |
| Method: [] Me                         | chanical Baller; [] Galvenized<br><u>(   L  </u> Ft. water x | WEI<br>Beller, [] PVC Beller, [] Disp. Polyel<br>- 12 - 5 gell. /k.* = one | LEVACUATION hylene Baller, [] SST, casing volume | galler, [] Submersible Pump<br>5gets. x 3 = pumps vo | o, [] Low Flow, Peri I                | Pump<br>1 |
|                                       | · ·                                                          | off = 0.653 gal./ft. 6" well = 1.469 (                                     |                                                  |                                                      |                                       |           |
| Water Quality:                        |                                                              | ·                                                                          |                                                  | ODOR: Y                                              | S or NO SHEE                          | N: YE     |
| Comments:                             |                                                              |                                                                            | •                                                |                                                      |                                       |           |
|                                       |                                                              |                                                                            |                                                  |                                                      |                                       |           |
|                                       |                                                              | EV                                                                         | CUATION DATA                                     | -                                                    |                                       |           |
| Ime.                                  | Gentlern.                                                    | Inconstan                                                                  | ett .                                            | <u>sc</u>                                            | ORP                                   |           |
| 142                                   | 7                                                            | 12.8                                                                       | <del></del>                                      | 1221                                                 | -79.3                                 | _         |
| 1425                                  | <u>{ 0,5 </u>                                                | 12.0                                                                       | 6.87                                             | <u> </u>                                             | -11.3<br>-20 7                        | -         |
| 1742                                  | 1.0                                                          | 13:4                                                                       | 401                                              | 1337                                                 | - 00.7                                |           |
| <u> 1427</u><br>1429                  | 2.0                                                          | 13.7                                                                       | 6(0)                                             | 121 (                                                | <u> </u>                              | _         |
| 77-                                   |                                                              |                                                                            | EUL                                              | 1314                                                 | <u> </u>                              | _         |
| 1491                                  | <del>-</del>                                                 |                                                                            |                                                  | · · ·                                                | <del></del>                           | -         |
| <u> </u>                              | <del></del>                                                  |                                                                            |                                                  |                                                      |                                       | -         |
| ·                                     | <del>.</del> — .                                             | · . — · — ·                                                                |                                                  |                                                      | <del></del>                           | -         |
|                                       | <del></del>                                                  | <del></del>                                                                | •                                                |                                                      |                                       | _         |
|                                       | <del>-</del>                                                 |                                                                            |                                                  |                                                      |                                       | -         |
|                                       |                                                              | •                                                                          |                                                  |                                                      |                                       | _         |
|                                       |                                                              | WE                                                                         | LL SAMPLING                                      |                                                      |                                       |           |
| Secreting Meth                        | od: 🕅 Disposable Poly Belle                                  | r, [] Submersible Pump, [] Low Fi                                          | low, []Peri Pump                                 | Sample Type: /                                       | Matural, [] Duplicate                 | N[]F      |
| E                                     | acameter                                                     | Secrete Container                                                          |                                                  | Prescration.                                         |                                       |           |
|                                       | тех                                                          | (2) 40 ml VOA                                                              |                                                  | Hydrochloric acid                                    | •                                     |           |
| • •                                   | ITBE<br>IRO as Gasoline                                      | Edracted from BTEX VOA<br>(2) 40 ml VOA                                    |                                                  | Hydrochloric acid<br>Hydrochloric acid               |                                       | •         |
|                                       | RO as Diesel<br>Ishene                                       | (2) 1-liler ember gises<br>(2) 40 mi VOA                                   |                                                  | Sulfuric acid<br>None                                |                                       |           |
| • • •                                 | uifate<br>IACH                                               | (1) 250 ml poly plastic<br>(1) 1-ter poly plastic                          |                                                  | None<br>None                                         |                                       |           |
| įįυ                                   | eed                                                          | (1) 125 m poly plantic                                                     | ,                                                | Nitric acid                                          | Fillered: [ ] Yes, [ ] (              | No        |
| (j ∈                                  | PH<br>PH                                                     | (3) 40 ml VOA<br>(2) 1-Rer amber gises                                     |                                                  | Hydrochloric acid<br>Hydrochloric acid               |                                       |           |
|                                       | AHE<br>OC'S                                                  | (2) 1-Mer amber glees<br>(4) 40 ml VOA                                     |                                                  | None<br>Hydrochloric acid                            |                                       |           |
| · · · · · · · · · · · · · · · · · · · | netrated Aitroson                                            | 1 402100                                                                   | <del>-</del>                                     | Suc facic                                            | . =                                   |           |
| ,IBI'S                                | uliste                                                       | 500 pt /<br>(1) 435-ml poly plantic                                        |                                                  | Sulfuric                                             |                                       |           |
| <b>)X</b> ) 8                         | ulide<br>Sirate                                              | (1) 125 mi poly plantic<br>_(1) 125 mi poly plantic                        |                                                  | None<br>None                                         |                                       |           |
| 1X 8                                  | lethene/Ethene/Ethene                                        | 2(1) 460 ret poly plantic 4/6<br>(1) 460 ter poly plantic                  | -d voa                                           | Sulfide                                              | Stored: "but                          | Yes, (    |
| XX-XX                                 |                                                              | (II) AGO (III DOM BERNEC                                                   |                                                  |                                                      | · · · · · · · · · · · · · · · · · · · | Yes. 1    |
| XXX                                   | on,Manganese                                                 | 500 ml                                                                     |                                                  | C M / T// -                                          |                                       |           |
| Laboratory: [                         | on,Manganese<br>  Quantarra: [ ] Microssaps,[                | \$30 pq  <br>    STL,     Northern Analytical (   Gu                       | # Coast: Other                                   | · ·                                                  |                                       | ,,        |
| Laboratory: [                         | on,Manganese<br>  Quantama: [ ] Microssaps, <br>  Sade Mo.   | ( ) STL.   ) Northern Analytical ( ) Go<br>Calibration Cale                |                                                  | Decordant                                            | nellon.                               | •         |
| Laboratory: [                         | on,Manganese<br>  Quantarra: [ ] Microssaps,[                | \$30 pq  <br>    STL,     Northern Analytical (   Gu                       |                                                  | ·                                                    |                                       | '<br>  No |

| Project:    | IZVA                 |                                          |                                                                 |                                                    | -/ 1.                                          | WellD:WV                          | · - :          |
|-------------|----------------------|------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------|------------------------------------------------|-----------------------------------|----------------|
| Personnet   |                      | Z" PV                                    |                                                                 | Weether:                                           | Noizra                                         | - 17 (-                           |                |
| •           | meter/Type:          |                                          | 10 71                                                           |                                                    | 14.45                                          |                                   |                |
| Screen:     | a Guille Chilling I  | messuring point):                        |                                                                 |                                                    | / 1/4 /                                        | ft was                            |                |
| PLINE: J    | /CR N/               | Mana traditions the death                | to below static water the tube was rai                          | pth to Product                                     |                                                |                                   |                |
| PTODE: (    | E3 0 NO              | r you wascase the cope                   | I DRICK WHILE AND STOR MED 131                                  | ned to Belone Still                                |                                                |                                   |                |
| Method: #   | Machanical           | Beller, [] Galvenized Bel<br>Ft. water x | WELL 1 ler, [] PVC Beller, [] Disp. Polyethy gel. /h * = one cr | EVACUATION<br>tene Gailer, [] S\$T<br>using volume | Bajler, [] Submeralble Pu<br>Gels, x 3 = purge | mp, [] Low Plow, [] (Terl         | Pagre          |
| SCH 40 PI   | pe* 2* welf &        | 0.163 gal /h; 4" well =                  | 0.653 gal./ft. 6" wait = 1.469 gal                              | /L 5" well = 2.5                                   | 11 gel./R. Any Well Cit                        | set in radius = $3.14 \times R^4$ |                |
| Water Qua   | My:                  | · · · · · · · · · · · · · · · · · · ·    | · ·                                                             |                                                    | ODOR:                                          | YES or NO SHE                     | EN: Y          |
| Commente    | ·                    | <u>-</u>                                 |                                                                 |                                                    |                                                | ·                                 |                |
|             |                      |                                          | E/AC                                                            | SATION DATA                                        |                                                |                                   |                |
| Dog         |                      | Gallons                                  | Temperature                                                     | eH .                                               | SC.                                            | ORP                               |                |
|             | <b>5</b> 0           |                                          |                                                                 | ****                                               | -                                              |                                   |                |
| 13          | 52                   | fro 0.5                                  | 12.3                                                            | 7.23                                               | 1166                                           | -150.3                            | , <u> </u>     |
| 13.         | 14                   | 2. 1.0                                   | 13.1                                                            | 7.14                                               | 1146                                           | - 160.                            | _              |
| 139         | C                    | 1.5                                      | <u>/3.1</u>                                                     | 7.17                                               | 1132                                           | <u>-170,6</u>                     | _              |
|             | <del></del>          | <del></del>                              |                                                                 |                                                    |                                                |                                   | _              |
| <u> 133</u> | 0                    |                                          | <del></del> .                                                   |                                                    |                                                |                                   | _              |
|             |                      |                                          |                                                                 |                                                    |                                                |                                   | _              |
|             | <del></del> -        |                                          | <del> </del>                                                    |                                                    |                                                |                                   | -              |
|             |                      |                                          |                                                                 |                                                    |                                                |                                   | -              |
| •           |                      |                                          | -                                                               |                                                    |                                                |                                   | -              |
|             |                      |                                          |                                                                 |                                                    | <del></del>                                    |                                   |                |
|             |                      |                                          | WELL                                                            | SAMPLING                                           |                                                |                                   |                |
| Sampling I  | Wethod: [ ] D        | teposoble Poty Baller, [                 | ] Submarsible Pump; [ ] Low Flov                                | r, [] Perl Pump                                    | Semple Type:                                   | []Natural, []Duplice              | <b>i</b> , [ ] |
|             | Parameter            |                                          | Serrole Container                                               |                                                    | Preservetive                                   |                                   |                |
| !!          | BTEX<br>MTBE         |                                          | (2) 40 ml VOA                                                   |                                                    | Hydrochloric acid<br>Hydrochloric acid         |                                   |                |
| []          | GRO as G             |                                          | Extracted from STEX VOA<br>(2) 40 ml VOA                        |                                                    | Hydrochloric acid                              |                                   | ٠.             |
| [ ]<br>[ ]  | DRO as Di<br>Methene | acai                                     | (2) 1-Mer ember glass<br>(2) 40 ml VDA                          |                                                    | Sulfuric acid<br>None                          |                                   |                |
| [ ]<br>[ ]  | Sulfate<br>HACH      |                                          | (1) 250 ml poly plastic<br>(1) 1-Wer poly plastic               |                                                    | None<br>None                                   |                                   |                |
|             | Leed<br>VPH          |                                          | (1) 125 ml poly plastic<br>(3) 40 ml VOA                        |                                                    | Nitric acid<br>Hydrochloric acid               | Filtered: [ ] Yes, [ ]            | No             |
|             | EPH<br>PAHs          |                                          | (2) 1-liter ember gless<br>(2) 1-liter ember gless              |                                                    | Hydrochloric acid<br>None                      |                                   |                |
| ii          | vocs                 |                                          | (4) 40 mt VOA                                                   |                                                    | Hydrochloric acid                              |                                   |                |
| IBCs        |                      |                                          | 500 m. 1                                                        |                                                    |                                                | <del></del>                       |                |
| XX X Z Z    | Sulfete<br>Sulfide   | -                                        | (1) 136 mi poty plastic<br>(1) 125 mi poty plastic              |                                                    | Sulfuric<br>None                               |                                   |                |
|             | Mirate               | ihene/Eihene                             | (1) 125 ml poly plastic                                         | / stee                                             | None                                           |                                   |                |
| 8           | Iron,Mengi           | •                                        | (1) 185 mt poly plants: 4/0 pt.                                 | voa.                                               | Sufficie<br>Nitric                             | Filtered:                         | Yes,           |
| Laboratory  | r: [] Quanta         | ти: [ ] Мстововра, [ ] З                 | SCOMUL<br>TL,[]Northern Analytical []Guiff                      | Commet: Other_G                                    | incuster                                       | Chain-of-Custody: [               | Yes,           |
| Metac       |                      | Serial No.                               | Cultivation Date                                                | . —                                                | Decenter                                       | rination                          |                |
| рH          |                      | oakton_                                  | 11-27-06                                                        | Polable W                                          | /ster: Yes No []                               | Mitric Acid: Yes [                | ] No           |
|             |                      |                                          | · · · · · · · · · · · · · · · · · · ·                           | Liquinac                                           | Yes 25 No[]                                    | Di Water: Yes                     |                |
| SC<br>ORP   |                      | 454 550                                  | (1                                                              | Methenol:                                          |                                                | ,                                 | -              |

|                               |                                             | ILLIPS, INC GF                                             |                                            |                                            |                                     |                 |
|-------------------------------|---------------------------------------------|------------------------------------------------------------|--------------------------------------------|--------------------------------------------|-------------------------------------|-----------------|
| Project: COVESO               |                                             |                                                            |                                            | 1358                                       | Well ID: [707                       | MW-3            |
| Personnel: 7/4                | N SPAR                                      | HAWK                                                       | Weather:                                   |                                            |                                     |                 |
| Casing Diameter/Type:_        | 2" PVC                                      | Measuring Point D                                          |                                            | ORTH                                       |                                     |                 |
| Well Depth (feet below n      | neasuring point):/3                         | <u>8,3/</u>                                                | oth to Wester 14(c)                        | 45                                         | ft weter                            |                 |
| Screen:                       |                                             |                                                            | th to Product                              |                                            | <del>_</del>                        |                 |
| J-TUBE: YES or NO             | If yes indicate the depth b                 | elow static water the tube was rais                        | ed to Before Sempling:                     |                                            |                                     |                 |
|                               | <u> </u>                                    |                                                            |                                            |                                            |                                     |                 |
|                               |                                             | WELLE                                                      | VACUATION                                  |                                            |                                     |                 |
| Method: [] Mechanical B       | leiler, [] Galvenized Bailer<br>Ft, weter x | , [] PVC Baller, [] Disp. Polyethyli<br>gal./ft * + one ca | one Bailer, ( ) SST Bailer,<br>sing volume | ( ) Submersible Pur<br>gals. x 3 = purps v | np. ( ) Low Flow. ( ) Peri Problems | ump<br>gels.    |
|                               | •                                           | 053 gail/fi. 6" well = 1,469 gail/                         |                                            |                                            | _                                   |                 |
| -                             | •                                           |                                                            | -                                          | •                                          | (ES or NO SHEEN                     | : YES or NO     |
|                               |                                             | · · · · · · · · · · · · · · · · · · ·                      |                                            |                                            |                                     |                 |
|                               |                                             |                                                            |                                            |                                            |                                     |                 |
|                               |                                             | EVACU                                                      | ATAG NOTA                                  |                                            |                                     |                 |
| Time                          | <u>Gallons</u>                              | Terrograture                                               | pti ·                                      | SC                                         | 282                                 | <u>00</u>       |
|                               | <u>-</u>                                    |                                                            |                                            |                                            |                                     |                 |
|                               |                                             |                                                            |                                            | <u> </u>                                   |                                     |                 |
|                               | <del></del>                                 | <del></del> -                                              | <del></del>                                | <del></del>                                | <del></del>                         |                 |
|                               | See                                         | <u> </u>                                                   |                                            |                                            |                                     | <del></del>     |
|                               |                                             | <u> 11100 5 .</u>                                          |                                            | ~ <del></del>                              |                                     |                 |
|                               | <del></del>                                 |                                                            |                                            |                                            |                                     |                 |
|                               |                                             |                                                            |                                            |                                            |                                     |                 |
|                               |                                             |                                                            |                                            |                                            |                                     |                 |
|                               |                                             | <u> </u>                                                   |                                            |                                            |                                     |                 |
|                               |                                             | <del></del>                                                |                                            |                                            |                                     |                 |
|                               | <del></del>                                 | WELL                                                       | SAMPLING                                   |                                            | <del></del>                         |                 |
| Sampling Method: [ 1 Di       | sposable Polv Beller, † 18                  | Submersible Pump. ( ) Low Flow                             |                                            | Sarrole Type:                              | []Natural, []Duplicate,             | J 1 Fleid Blank |
| Parameter                     | .,                                          | Semple Continuer                                           |                                            | sandike                                    |                                     |                 |
| [] BTEX                       | •                                           | (2) 40 ml VOA                                              |                                            | drochlaric acid                            |                                     |                 |
| [] MTBE<br>[] GRO as Ga       | stoline                                     | Extracted from BTEX VOA<br>(2) 40 ml VOA                   | • •                                        | rdrochlorie seid<br>rdrochlorie seid       |                                     |                 |
| [ ] DRO as Die<br>[ ] Methane | radi                                        | (2) 1-liter amber glass<br>(2) 40 ml VOA                   | . Su                                       | Muric acid<br>Ina                          |                                     |                 |
| Suffete                       |                                             | (1) 250 ml poly plastic                                    | No                                         | 174                                        |                                     |                 |
| [ ] Leed                      |                                             | (1) 1-liter poly plastic<br>(1) 125 mi poly plastic        | N                                          | ine<br>Inc scid                            | Filtered: []Yes,[]N                 | •               |
| M VPH<br>[] EPH               |                                             | (3) 40 ml VQA<br>(2) 1-liter amber glass                   | •                                          | drochloric acid<br>drochloric acid         |                                     |                 |
| [ ] PAHs                      |                                             | (2) 1-liter amber glass                                    | No                                         | ne<br>drochlorie acid                      |                                     |                 |
| l J VOC'S                     | <del></del> _                               | (4) 40 ml VOA                                              |                                            |                                            |                                     |                 |
| iBfs<br>[] Sulfinte           |                                             | (1) 125 ml poly plastic                                    | ۵.                                         | ffuric                                     |                                     |                 |
| 3 Sulfide                     |                                             | (1) 125 ml poly plantic                                    | No                                         | ne                                         |                                     |                 |
| [ ] Nitrate   Methane/Et      | hene/Ethene                                 | (1) 125 mi poly plastic<br>(1) 125 mi poly plastic         | _                                          | ine<br>Ifide                               |                                     |                 |
| [ ] from Manga                |                                             | (1) 125 ml poly plantic                                    | / NH                                       | ric /                                      |                                     | 'es. [ ] No     |
| Laboratory: [ ] Guarter       | ra: [ } Microseeps, [ ] STI                 | .,[ ] Northern Analytical [ ] Gulf (                       | Coest Other / Q.A.                         | caster.                                    | Chaire-of-Custody: 1/1              | 'es, [ ] No     |
| Mater.                        | Seriel No.                                  | Calibration Data                                           |                                            | Daconiac                                   | rinetion                            |                 |
| pH<br>SC                      | Witton.                                     | <u></u>                                                    |                                            | Yes No[]                                   |                                     | No [ ]          |
| ORP<br>DO                     | 46/93)                                      |                                                            | Methanol:                                  | Yes   Libb()                               |                                     |                 |
| Comments:                     | 7                                           | <del></del>                                                |                                            |                                            |                                     | •               |
| Comments;                     |                                             | <del></del>                                                |                                            |                                            |                                     |                 |
| <del></del>                   | <del></del>                                 | <del></del>                                                |                                            |                                            |                                     |                 |

| Project LOVE SOK                                                                                                                                                                                                  | ~~                                                                  | LLIPS, INC G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>.</u> .                                            |                                                                                                                                                                                                                                          |                                                                 |                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------|
|                                                                                                                                                                                                                   | y PARK                                                              | Samula Date: 11/27/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OC_Semple_Tim                                         | 1321                                                                                                                                                                                                                                     | _We D: CCP-                                                     | MW-                                   |
| Personnet: <u>RYAN</u>                                                                                                                                                                                            |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Weether:_                                             | Cloudy                                                                                                                                                                                                                                   | ~5°F                                                            |                                       |
| Casing Distrator/Type:                                                                                                                                                                                            | 2"PVC                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Description:                                          | N <sup>th</sup>                                                                                                                                                                                                                          |                                                                 |                                       |
| Wall Depth (fast below must                                                                                                                                                                                       | euring (soint):                                                     | 7,20 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | apth to Water                                         | 4.79                                                                                                                                                                                                                                     | R water                                                         |                                       |
| 8creen:                                                                                                                                                                                                           |                                                                     | _ De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pth to Product                                        | ·                                                                                                                                                                                                                                        |                                                                 |                                       |
| J-TUBE: YES or NO If y                                                                                                                                                                                            | res indicate the depth bei                                          | ow static water the tube was rai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lead to Baltim Sampli                                 | *                                                                                                                                                                                                                                        |                                                                 |                                       |
|                                                                                                                                                                                                                   |                                                                     | <del></del> _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <del></del>                                           |                                                                                                                                                                                                                                          | <del> </del>                                                    |                                       |
| Method: [] Mechanical Ball                                                                                                                                                                                        | er, [ ] Gallvanizad Bailer,                                         | WELL<br>[] PVC Beller, [] Disp. Polyeth<br>gel. /R * = one o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EVACUATION<br>Hone Baller, [] SST B                   | eller, ( ) Submersible Pure                                                                                                                                                                                                              | . () Low Flow, Hori P                                           | ALID<br>THE                           |
| SCH 68 Pipe" 2" well = 0.16                                                                                                                                                                                       |                                                                     | 63 gal./R; 6" well = 1.469 gal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       |                                                                                                                                                                                                                                          |                                                                 |                                       |
| Weter Quality:                                                                                                                                                                                                    |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | Opor: Y                                                                                                                                                                                                                                  | _                                                               | VESC NO                               |
| Comments:                                                                                                                                                                                                         |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                          |                                                                 | 1000                                  |
| CO111114-16:                                                                                                                                                                                                      | <del></del>                                                         | <del></del> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <del></del>                                           |                                                                                                                                                                                                                                          |                                                                 |                                       |
| <del></del>                                                                                                                                                                                                       | <del></del>                                                         | EVAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATAD MOITALS                                          |                                                                                                                                                                                                                                          |                                                                 | , . <u></u>                           |
| lime                                                                                                                                                                                                              | <u>Gallery</u>                                                      | Terrenter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | met -                                                 | <u>sc</u>                                                                                                                                                                                                                                | ORP                                                             | <del>50</del>                         |
| 1312 -                                                                                                                                                                                                            | <del>Qr.</del>                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                                           | <u>-0.42.0</u>                                                                                                                                                                                                                           | 721 /                                                           |                                       |
| 1317                                                                                                                                                                                                              | <u> </u>                                                            | 12.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6,66                                                  | 28/12-8/2                                                                                                                                                                                                                                | 121,6                                                           | 196                                   |
| 1319                                                                                                                                                                                                              | 1.0                                                                 | 12.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.74                                                  | 016                                                                                                                                                                                                                                      | 129.4                                                           | 1,16                                  |
| 1221                                                                                                                                                                                                              |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                          | <del></del> .                                                   |                                       |
| 1321                                                                                                                                                                                                              | <del></del> .                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | . ———                                                                                                                                                                                                                                    | <del></del>                                                     | <del></del>                           |
|                                                                                                                                                                                                                   | <del></del>                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · ·                                                   |                                                                                                                                                                                                                                          | _ <del></del> .                                                 |                                       |
|                                                                                                                                                                                                                   |                                                                     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                                                                                                                                                                                                                                          |                                                                 |                                       |
|                                                                                                                                                                                                                   |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                          |                                                                 |                                       |
|                                                                                                                                                                                                                   |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                          |                                                                 |                                       |
|                                                                                                                                                                                                                   |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                          |                                                                 |                                       |
| <del></del>                                                                                                                                                                                                       | <del></del>                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                          |                                                                 |                                       |
|                                                                                                                                                                                                                   |                                                                     | · -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>L SAMPLING</u>                                     |                                                                                                                                                                                                                                          |                                                                 |                                       |
| Sempling Method: () Dispo                                                                                                                                                                                         | seable Poly Baller, [ ] S.                                          | ultmerable Pump. [] Low Plo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | w, []Peri Pump                                        | Sample Type:                                                                                                                                                                                                                             | [] Natural, [] Duplicate                                        | [] Fleid Stank                        |
|                                                                                                                                                                                                                   |                                                                     | Sample Container                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       | Primaryathya                                                                                                                                                                                                                             |                                                                 |                                       |
| Parameter                                                                                                                                                                                                         |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | <del>,,,</del>                                                                                                                                                                                                                           |                                                                 |                                       |
| () BTEX                                                                                                                                                                                                           |                                                                     | (2) 40 ml VOA<br>Editacted from STEX VOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       | Hydrochloric acid                                                                                                                                                                                                                        |                                                                 |                                       |
| [ ] BTEX<br>[ ] MTBE<br>[ ] GPO as Gasol                                                                                                                                                                          |                                                                     | Edirected from STEX VOA<br>(2) 40 ml VOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       | Hydrochloric acid<br>Hydrochloric acid<br>Hydrochloric acid                                                                                                                                                                              |                                                                 |                                       |
| [ ] BTEX [ ] MTRE [ ] GRO as Gaso [ ] DRO as Diseas [ ] Mithene                                                                                                                                                   |                                                                     | Educated from STEX VOA<br>(2) 40 ml VOA<br>(2) 1-Ber striber glass.<br>(2) 40 ml VOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                     | Hydrochloric acid<br>Hydrochloric acid<br>Hydrochloric acid<br>Sulfuric acid<br>None                                                                                                                                                     |                                                                 |                                       |
| [ ] BTEX. [ ] MTRE [ ] GRO as Gasol [ ] DRO as Disea [ ] Multime [ ] Sullain [ ] HACH                                                                                                                             |                                                                     | Educated from STEX VOA<br>(2) 40 mi VOA<br>(2) 1-Rey matter glass.<br>(2) 40 mi VOA<br>(1) 250 mi poly pissilic<br>(1) 1-Rey poly pissilic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                     | Hydrochloric acid<br>Hydrochloric acid<br>Hydrochloric acid<br>Sulflatic acid<br>None<br>None                                                                                                                                            | Ellina have file                                                |                                       |
| [ ] BTEX [ ] MTRE [ ] GRO as Gasol [ ] DRO as Diseas [ ] Methene [ ] Sulfate [ ] HACH [ ] Lend [ ] VPH                                                                                                            |                                                                     | Edwarded from STEX VOA (2) 40 ml VOA (2) 1-Rer matter glass. (2) 40 ml VOA (1) 250 ml poly plastic (1) 1-Rer poly plastic (1) 125 ml poly plastic (3) 40 ml VOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                     | Hydrachtoric acid<br>Hydrachtoric acid<br>Hydrachtoric acid<br>Sulfuric acid<br>None<br>None<br>None<br>Note<br>Hydrachtoric acid                                                                                                        | Pillered: )\/Yes. [ ]                                           | <b>ko</b>                             |
| [ ] BTEX [ ] MTRE [ ] GNO as Graco [ ] DRO as Diseas [ ] Muthens [ ] Sullain [ ] HACH [ ] Lend [ ] VPH [ ] EPH [ ] PAHs                                                                                           |                                                                     | Educated from STEX VOA (2) 40 ref VOA (2) 1-Rev minter glass. (2) 40 mt VOA (1) 250 nst poly plastic (1) 1-Rev poly plastic (1) 1-St mt poly plastic (3) 40 mt VOA (2) 1-Rev minter glass (2) 1-Rev minter glass (2) 1-Rev minter glass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                     | Hydrochloric acid Hydrochloric acid Hydrochloric acid Hydrochloric acid None None None None None Hydrochloric acid Hydrochloric acid None                                                                                                | Filtered: ) (Yes, [ ])                                          | <b>b</b>                              |
| [ ] BTEX [ ] MTRE [ ] GRO as Gasol [ ] DRO as Diseas [ ] Muthane [ ] Sultain [ ] HACH [ ] Leed [ ] VPH [ ] EPH                                                                                                    |                                                                     | Educated from STEX VOA (2) 40 ref VOA (2) 1-Rer ember glenn. (2) 40 ref VOA (1) 250 ref poly plantic (1) 1-Rer poly plantic (1) 125 ml poly plantic (3) 40 ml VOA (2) 1-liter ember gleen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       | Hydrachloric acid Hydrachloric acid Hydrachloric acid Mone None None Note Hydrachloric acid Hydrachloric acid Hydrachloric acid                                                                                                          | Pillered: )\/Yes. [])                                           | <b>lo</b>                             |
| [ ] BTEX [ ] MTRE [ ] GRO as Gaso [ ] DRO as Disea [ ] Mathens [ ] Sulfan [ ] HACH [ ] Land [ ] VPH [ ] EPH [ ] PANs [ ] VOC'S                                                                                    |                                                                     | Educated from STEX VOA (2) 40 ref VOA (2) 1-Rev ember glans (2) 40 ref VOA (1) 280 ref poly plantic (1) 1-Rev poly plantic (3) 40 ref VOA (3) 40 ref VOA (2) 1-Rev ember glass (4) 40 ref VOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                                     | Hydrochloric sold<br>Hydrochloric sold<br>Hydrochloric sold<br>Sulfaric sold<br>None<br>None<br>None<br>Nitric sold<br>Hydrochloric sold<br>Hydrochloric sold<br>None<br>Hydrochloric sold                                               | Filtered: ) (Yes, [ ])                                          | <b>b</b>                              |
| [ ] BTEX [ ] MTRE [ ] GRO as Gaso [ ] DRO as Disea [ ] Mathens [ ] Sulfan [ ] HACH [ ] Land [ ] VPH [ ] EPH [ ] PANs [ ] VOC'S                                                                                    |                                                                     | Educated from STEX VOA (2) 40 ref VOA (2) 1-Rer exther glass. (2) 40 ref VOA (1) 280 ref poly plastic (1) 1-Rer poly plastic (1) 125 ml poly plastic (3) 40 ml VOA (2) 1-Rer ember glass (4) 40 ml VOA  SCO Jee (1) 1486 ref poly plastic (1) 125 ml poly plastic (1) 125 ml poly plastic (1) 125 ml poly plastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       | Hydrochloric acid Hydrochloric acid Hydrochloric acid Sulfuric acid None None None Nitric acid Hydrochloric acid Hydrochloric acid Hydrochloric acid None Hydrochloric acid None Hydrochloric acid                                       | Patered: ) (Yes, [])                                            | <b>N</b>                              |
| [ ] BTEX [ ] MTRE [ ] GRO as Gaso [ ] DRO as Disea [ ] Mathens [ ] Sulfan [ ] HACH [ ] Land [ ] VPH [ ] EPH [ ] PANs [ ] VOC'S                                                                                    |                                                                     | Educated from STEX VOA (2) 40 ref VOA (2) 1-Rev matter glass. (2) 40 ref VOA (1) 280 ref poly plantic (1) 1-Rev poly plantic (3) 40 ref VOA (3) 40 ref VOA (2) 1-Rev matter glass (4) 40 ref VOA  SCOU pro. (1) 1486-ref poly plantic (1) 125 ref poly plantic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n/ voa                                                | Hydrochloric sold Hydrochloric sold Hydrochloric sold Sulfaric sold None None None Nitric sold Hydrochloric sold Hydrochloric sold Hydrochloric sold None Hydrochloric sold Sulfaric None None None Sulfaric None None                   |                                                                 |                                       |
| [ ] BTEX [ ] MTBE [ ] GRO as Gaso [ ] DRO as Diese [ ] Muthene [ ] Sultate [ ] Land [ ] VPH [ ] EPH [ ] PANs [ ] VOCS  IBI's  Sultate [ ] Sultate [ ] Sultate [ ] Muthene/Ene [ ] Sultate [ ] Sultate [ ] Nitrate | ine/Ethene                                                          | Executed from STEX VOA (2) 40 ref VOA (2) 1-flow ember glass. (2) 40 ref VOA (1) 250 ref poly plantic (1) 1-flow poly plantic (1) 1-8 ref poly plantic (3) 40 ref VOA (2) 1-flow ember glass (2) 1-flow ember glass (4) 40 ref VOA  SOCO pro (1) 148 ref poly plantic (1) 125 ref poly plantic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,                                                     | Hydrachtoric acid Hydrachtoric acid Hydrachtoric acid None None None None None Note Hydrachtoric acid Hydrachtoric acid Hydrachtoric acid Hydrachtoric acid None Hydrachtoric acid None Hydrachtoric acid None Suffute None Suffute None | Filterod: Act                                                   | /es. [ ] No                           |
| [ ] BTEX [ ] MTBE [ ] GRO as Gaso [ ] DRO as Diese [ ] Muthene [ ] Sultate [ ] Land [ ] VPH [ ] EPH [ ] PANs [ ] VOCS  IBI's  Sultate [ ] Sultate [ ] Sultate [ ] Muthene/Ene [ ] Sultate [ ] Sultate [ ] Nitrate | ine/Ethene                                                          | Executed from STEX VOA (2) 40 ref VOA (2) 1-Rev ember glans. (2) 40 ref VOA (1) 280 ref poly plantic (1) 1-Rev poly plantic (3) 40 ref VOA (2) 1-Rev ember glass (4) 40 ref VOA  SCO Jest (1) 1486-ref poly plantic (1) 125 ref poly plantic (1) 1486-ref poly plantic (1) 1486-ref poly plantic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                                                     | Hydrachtoric acid Hydrachtoric acid Hydrachtoric acid None None None None None Note Hydrachtoric acid Hydrachtoric acid Hydrachtoric acid Hydrachtoric acid None Hydrachtoric acid None Hydrachtoric acid None Suffute None Suffute None | Filterod: Act                                                   |                                       |
| BTEX                                                                                                                                                                                                              | me/Ethere on : [   Maronespa. [ ] STL, Setal No.                    | Educated from STEX VOA (2) 40 ref VOA (2) 40 ref VOA (2) 1-flow mather glass. (2) 40 ref VOA (1) 250 ref poly plassic (1) 1-flow poly plassic (3) 40 ref VOA (2) 1-flow amber glass (2) 1-flow amber glass (4) 40 ref VOA   SOCIAN  (1) 426 ref poly plassic (1) 125 ref poly plassic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,                                                     | Hydrachtoric acid Hydrachtoric acid Hydrachtoric acid None None None None None Note Hydrachtoric acid Hydrachtoric acid Hydrachtoric acid Hydrachtoric acid None Hydrachtoric acid None Hydrachtoric acid None Suffute None Suffute None | Filtered: At                                                    | /es. [ ] No                           |
| BTEX                                                                                                                                                                                                              | ine/Etypne  (I   Mortonespa. [ ] 811L,  Sector No.  (Oc. L. t. 6/4) | Educated from STEX VOA (2) 40 ref VOA (2) 1-flow mather glass. (2) 40 ref VOA (1) 280 ref poly plassic (1) 1-flow poly plassic (1) 1-8 ref poly plassic (3) 40 ref VOA (2) 1-flow amber glass (2) 1-flow amber glass (4) 40 ref VOA  SOC) 1-1 (1) 428 ref poly plassic (1) 125 ref poly plassic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | l Const: Other <u>(C. r</u><br>Potable Wi             | Hydrochloric acid Hydrochloric acid Hydrochloric acid None None None None None None None None                                                                                                                                            | Filtered: ¿†  Chair-of-Custody: †  Instin.  Nitro Acid: Yes [ ] | res. [ ] No<br>Pes. [ ] No<br>No.Per. |
| BTEX     BTEX                                                                                                                                                                                                     | InerEtiene Inercespe.[]STL Sected No. OC. L. t. c.                  | Educated from STEX VOA (2) 40 ref VOA (2) 1-flow mather glass. (2) 40 ref VOA (1) 250 ref poly plastic (1) 1-flow poly plastic (3) 40 ref VOA (3) 40 ref VOA (3) 1-flow mather glass (4) 40 ref VOA  SCO year (1) 125 ml poly plastic                                                                                          | 1 Coast: Other <u>  (C. e</u>                         | Hydrochloric acid Hydrochloric acid Hydrochloric acid None None None None None None None None                                                                                                                                            | Filtered: ¿†  Chair-of-Custody: †  Instin.  Nitro Acid: Yes [ ] | res. [ ] No<br>res. [ ] No            |
| BTEX     BTEX                                                                                                                                                                                                     | merEthere  10 (1 Merceneps. [] STL.  Sected No.  OC. L. T. G.       | Executed from STEX VOA (2) 40 ref VOA (2) 40 ref VOA (2) 1-flow ember gleen. (2) 40 ref VOA (1) 250 ref poly pleastic (1) 1-flow poly pleastic (1) 1-flow ember gleen (2) 1-flow ember gleen (2) 1-flow ember gleen (2) 1-flow ember gleen (3) 40 ref VOA  SOUTH (1) 125 ref poly pleastic (1) 125 ref poly plea | il Count: Other <u>LC-2</u><br>Polable Wi<br>Ugulman: | Hydrochloric acid Hydrochloric acid Hydrochloric acid None None None None None None None None                                                                                                                                            | Filtered: ¿†  Chair-of-Custody: †  Instin.  Nitro Acid: Yes [ ] | res. [ ] No<br>Pes. [ ] No<br>No.Per. |

# ATTACHMENT B LABORATORY ANALYTICAL REPORTS



PC) Elek 19425, Labertskin, Ph. 17865-3425 +737-8/8-3940. Feb. 717-636-9681+ www.infedesterNediscourt

#### ANALYTICAL RESULTS

Prepared for:

ConocoPhillips PO Box 2200 Bartlesville OK 74005

Prepared by:

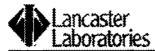
Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

#### **SAMPLE GROUP**

The sample group for this submittal is 1015627. Samples arrived at the laboratory on Tuesday, November 28, 2006. The PO# for this group is 4507261467 and the release number is KINGER.

| Client Description         | Lancaster Labs Number |
|----------------------------|-----------------------|
| MW-1 Grab Water Sample     | 4924310               |
| MW-3 Grab Water Sample     | 4924311               |
| DUP-MW-3 Grab Water Sample | 4924312               |
| CCP-MW-1 Grab Water Sample | 4924313               |
| Trip Blank Water Sample    | 4924314               |

#### **METHODOLOGY**


The specific methodologies used in obtaining the enclosed analytical results are indicated on the laboratory chronicles.

1 COPY TO **ELECTRONIC** COPY TO

Data Package Group

Tetra Tech, Inc

Attn: David Tyler



2425 from Holored (Mrs. P.O. Sick 12425, Landonius, Po. 17818-3635 - 717-869-3860 Fan; 717-456-2681 - Werkt Springsforfalde Journ

Questions? Contact your Client Services Representative Barbara A Weyandt at (717) 656-2300

Respectfully Submitted,

Mary E Lawy Max E. Snavely Senior Specialist



2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. WW 4924310

MW-1 Grab Water Sample Site# 6625 Coulson Park, MT

Collected:11/27/2006 14:31 by RS Account Number: 11288

Submitted: 11/28/2006 09:35 ConocoPhillips
Reported: 12/07/2006 at 08:47 PO Box 2200

Discard: 01/07/2007 Bartlesville OK 74005

COUM1 SDG#: BMT20-01

|       |                               |            |           | As Received         | As Received  |       |          |
|-------|-------------------------------|------------|-----------|---------------------|--------------|-------|----------|
| CAT   |                               |            | As Receiv | ed Method           | Limit of     |       | Dilution |
| No.   | Analysis Name                 | CAS Number | Result    | Detection<br>Limit* | Quantitation | Unite | Factor   |
| 01754 | Iron                          | 7439-89-6  | 8.88      | 0.0522              | 0.200        | mg/l  | 1        |
| 07058 | Manganese                     | 7439-96-5  | 0.795     | 0.00036             | 0.0050       | mg/l  | 1        |
| 00219 | Nitrite Nitrogen              | 14797-65-0 | N.D.      | 0.015               | 0.050        | mg/l  | 1        |
| 00220 | Nitrate Nitrogen              | 14797-55-8 | N.D.      | 0.040               | 0.10         | mg/1  | 1        |
| 00228 | Sulfate                       | 14808-79-8 | 700.      | 15.0                | 50.0         | mg/l  | 50       |
| 05869 | MT-VPH Waters                 |            |           |                     |              |       |          |
| 05877 | Total Purgeable Hydrocarbons  | n.a.       | 96.6 J    | 20.0                | 100.         | ug/1  | 1        |
| 05943 | Xylenes (total)               | 1330-20-7  | N.D.      | 1.00                | 10.0         | ug/1  | 1        |
| 05993 | Benzene                       | 71-43-2    | N.D.      | 0.5                 | 1.00         | ug/l  | 1        |
| 05994 | Toluene                       | 108-88-3   | N.D.      | 0.5                 | 5.00         | ug/l  | 1        |
| 05995 | Ethylbenzene                  | 100-41-4   | N.D.      | 0.5                 | 5.00         | ug/l  | 1        |
| 05996 | Methyl t-butyl ether          | 1634-04-4  | N.D.      | 2.00                | 5.00         | ug/l  | 1        |
| 05997 | Naphthalene                   | 91-20-3    | N.D.      | 1.00                | 5.00         | ug/l  | 1        |
| 05998 | C5-C8 Aliphatic Hydrocarbons  | n.a.       | 71.4 J    | 50.0                | 100.         | ug/1  | 1        |
| 05999 | C9-C12 Aliphatic Hydrocarbons | n.a.       | N.D.      | 20.0                | 100.         | ug/l  | 1        |
| 06002 | C9-C10 Aromatic Hydrocarbons  | n.a.       | N.D.      | 20.0                | 100.         | ug/1  | 1        |
| 06003 | Unadjusted C5-C8 Aliphatics   | n.a.       | 72.5 J    | 50.0                | 100.         | ug/1  | 1        |
| 06004 | Unadjusted C9-C12 Aliphatics  | n.a.       | 24.2 J    | 20.0                | 100.         | ug/1  | 1        |
|       |                               |            |           |                     |              |       |          |

The concentrations of individual target analytes and the surrogate standard have been subtracted from the concentrations of the appropriate hydrocarbon ranges as specified by the method.

Elution ranges for the target analytes are listed below: henzene, toluene, methyl t-butyl ether - C5-C8 aliphatics ethyl benzene, m,p-xylenes, o-xylene - C9-C12 aliphatics

Significant modifications to the method are listed below: The surrogate standard for the VPH analysis is a,a,a-trifluorotoluene for both the PID and FID. This compound elutes in the C5-C8 range. 1-Chloro-3-fluorobenzene is also used as an internal standard for the PID and elutes in the C5-C8 range. The use of the internal standard, surrogate standard that elute in the specified aliphatic or aromatic ranges is a significant modification. The peak areas for these standards are subtracted from the area for the specific ranges before the concentrations are calculated. This process has been validated in our laboratory and has produced acceptable data in the MA Round Robin study. Sample preservation met requirements (pH </= 2).

The table below lists the risk based screening levels (RBSL) used by the state of Montana. The limits are from the Tier 1 Groundwater RBSLs and Standards table. These limits are posted on the Montana DEQ web site (www.deq.state.mt.us). The limits were last updated October 2003.

<sup>\*=</sup>This limit was used in the evaluation of the final result



2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-866-2300 Fax: 717-656-2681 • www.lancasteriabs.com

Page 2 of 2

Lancaster Laboratories Sample No. WW 4924310

MW-1 Grab Water Sample Site# 6625 Coulson Park, MT

Collected:11/27/2006 14:31 by RS Account Number: 11288

Submitted: 11/28/2006 09:35 ConocoPhillips Reported: 12/07/2006 at 08:47 PO Box 2200

Discard: 01/07/2007 Bartlesville OK 74005

COUM1 SDG#: BMT20-01

| CAT   | 22"1 21111 11                     |             | As Received | As Received<br>Method | As Received<br>Limit of |       | Dilution |
|-------|-----------------------------------|-------------|-------------|-----------------------|-------------------------|-------|----------|
| No.   | Analysis Name                     | CAS Number  | Result      | Detection<br>Limit*   | Quantitation            | Units | Factor   |
|       | Analyte Name                      | RBSL (ug/l) |             |                       |                         |       |          |
|       | Xylenes                           | 10000       |             |                       |                         |       |          |
|       | Benzene                           | 5           |             |                       |                         |       |          |
|       | Toluene                           | 1000        |             |                       |                         |       |          |
|       | Ethylbenzene                      | 700         |             |                       |                         |       |          |
|       | MTBE                              | 30          |             |                       |                         |       |          |
|       | Naphthalene                       | 100         |             |                       |                         |       |          |
|       | C5-C8 Aliphatics                  | 350         |             |                       |                         |       |          |
|       | C9-C12 Aliphatics                 | 1000        |             |                       |                         |       |          |
|       | C9-C10 Aromatics                  | 100         |             |                       |                         |       |          |
| 07105 | Volatile Headspace<br>Hydrocarbon |             |             |                       |                         |       |          |
| 07106 | Methane                           | 74-82-8     | 1,100.      | 200.                  | 500.                    | ug/l  | 100      |

This sample was field filtered for dissolved metals.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

#### Laboratory Chronicle

| CAT   |                                   | _                              |        | Analysis         |                               | Dilution      |
|-------|-----------------------------------|--------------------------------|--------|------------------|-------------------------------|---------------|
| No.   | Analysis Name                     | Method                         | Trial# | Date and Time    | Analyst                       | <b>Pactor</b> |
| 01754 | Iron                              | SW-846 6010B                   | 1      | 12/01/2006 13:08 | Joanne M Gates                | 1             |
| 07058 | Manganese                         | SW-846 6010B                   | 1      | 12/01/2006 13:08 | Joanne M Gates                | 1             |
| 00219 | Nitrite Nitrogen                  | EPA 353.2                      | 1      | 11/28/2006 22:22 | Courtney A Shoff              | 1             |
| 00220 | Nitrate Nitrogen                  | EPA 353.2                      | 1      | 11/30/2006 01:50 | Brian C Veety                 | 1             |
| 00228 | Sulfate                           | EPA 300.0                      | 1      | 12/01/2006 00:26 | Ashley M Heckman              | 50            |
| 05869 | MT-VPH Waters                     | MA DEP VPH mod/SW-846<br>8021B | 1      | 11/30/2006 15:01 | K. Robert Caulfeild-<br>James | 1             |
| 07105 | Volatile Headspace<br>Hydrocarbon | SW-846 8015B modified          | l 1    | 12/04/2006 14:04 | Hai D Nguyen                  | 100           |
| 01848 | WW SW846 ICP Digest (tot rec)     | SW-846 3005A                   | 1      | 12/01/2006 00:15 | Helen L Schaeffer             | 1             |

<sup>\*=</sup>This limit was used in the evaluation of the final result



2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-856-2300 Fax: 717-656-2681 • www.lancasteriabs.com

Page 1 of 2

Lancaster Laboratories Sample No. WW 4924311

MW-3 Grab Water Sample Site# 6625 Coulson Park, MT

Collected:11/27/2006 13:58 by RS

RS Account Number: 11288

Submitted: 11/28/2006 09:35 Reported: 12/07/2006 at 08:47 ConocoPhillips PO Box 2200

Discard: 01/07/2007

Bartlesville OK 74005

COUM3 SDG#: BMT20-02

|       |                               |            |          |      | As Received         | As Received  |                               |          |
|-------|-------------------------------|------------|----------|------|---------------------|--------------|-------------------------------|----------|
| CAT   |                               |            | As Recei | bevi | Method              | Limit of     |                               | Dilution |
| No.   | Analysis Name                 | CAS Number | Regult   |      | Detection<br>Limit* | Quantitation | Units                         | Factor   |
| 01754 | Iron                          | 7439-89-6  | 8.46     |      | 0.0522              | 0.200        | mg/l                          | 1        |
| 07058 | Manganese                     | 7439-96-5  | 0.116    |      | 0.00036             | 0.0050       | $\mathfrak{m} \mathfrak{g}/1$ | 1        |
| 00219 | Nitrite Nitrogen              | 14797-65-0 | N.D.     | -    | 0.015               | 0.050        | mg/l                          | 1        |
| 00220 | Nitrate Nitrogen              | 14797-55-8 | N.D.     |      | 0.040               | 0.10         | mg/l                          | 1        |
| 00228 | Sulfate                       | 14908-79-8 | 93.5     |      | 15.0                | 50.0         | mg/l                          | 50       |
| 05869 | MT-VPH Waters                 |            |          |      |                     |              |                               |          |
| 05977 | Total Purgeable Hydrocarbons  | n.a.       | 1,140.   |      | 20.0                | 100.         | ug/l                          | 1        |
| 05943 | Xylenes (total)               | 1330-20-7  | 1.52 J   | T    | 1.00                | 10.0         | ug/1                          | 1        |
| 05993 | Benzene                       | 71-43-2    | 249.     |      | 0.5                 | 1.00         | ug/l                          | 1        |
| 05994 | Toluene                       | 108-88-3   | 2.52 J   | Г    | 0.5                 | 5.00         | ug/l                          | 1        |
| 05995 | Ethylbenzene                  | 100-41-4   | 2.58 j   | ſ    | 0.5                 | 5.00         | ug/l                          | 1        |
| 05996 | Methyl t-butyl ether          | 1634-04-4  | N.D.     |      | 2.00                | 5.00         | ug/l                          | 1        |
| 05997 | Naphthalene                   | 91-20-3    | 3.49 J   | ſ    | 1.00                | 5.00         | ug/l                          | 1        |
| 05998 | C5-C8 Aliphatic Hydrocarbons  | n.a.       | 621.     |      | 50.0                | 100.         | ug/l                          | 1        |
| 05999 | C9-C12 Aliphatic Hydrocarbons | n.a.       | 100.     |      | 20.0                | 100.         | ug/l                          | 1        |
| 06002 | C9-C10 Aromatic Hydrocarbons  | n.a.       | 167.     |      | 20.0                | 100.         | ug/l                          | 1        |
| 06003 | Unadjusted C5-C8 Aliphatics   | n.a.       | 872.     |      | 50.0                | 100.         | ug/l                          | 1        |
| 06004 | Unadjusted C9-C12 Aliphatics  | n.a.       | 272.     |      | 20.0                | 100.         | ug/l                          | 1        |

The concentrations of individual target analytes and the surrogate standard have been subtracted from the concentrations of the appropriate hydrocarbon ranges as specified by the method. Slution ranges for the target analytes are listed below: benzene, toluene, methyl t-butyl ether - C5-C8 alighatics

benzene, toluene, methyl t-butyl ether - C5-C8 aliphatics ethyl benzene, m,p-xylenes, o-xylene - C9-C12 aliphatics

Significant modifications to the method are listed below: The surrogate standard for the VPH analysis is a,a,a-trifluorotoluene for both the PID and FID. This compound elutes in the C5-C8 range. 1-Chloro-3-fluorobenzene is also used as an internal standard for the PID and elutes in the C5-C8 range. The use of the internal standard, surrogate standard that elute in the specified aliphatic or aromatic ranges is a significant modification. The peak areas for these standards are subtracted from the area for the specific ranges before the concentrations are calculated. This process has been validated in our laboratory and has produced acceptable data in the MA Round Robin study. Sample preservation met requirements (pH </- 2).

The table below lists the risk based screening levels (RBSL) used by the state of Montana. The limits are from the Tier 1 Groundwater RBSLs and Standards table. These limits are posted on the Montana DEQ web site (www.deq.state.mt.us). The limits were last updated October 2003.

<sup>\*=</sup>This limit was used in the evaluation of the final result



2425 New Holland Pike, PO Box 12425, Lancaster, PA 17606-2425 •717-856-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

ug/1

100

Lancaster Laboratories Sample No. WW 4924311

MW-3 Grab Water Sample Site# 6625 Coulson Park, MT

Collected:11/27/2006 13:58 by RS Account Number: 11288

Submitted: 11/28/2006 09:35 ConocoPhillips
Reported: 12/07/2006 at 08:47 PO Box 2200

Discard: 01/07/2007 Bartlesville OK 74005

COUM3 SDG#: BMT20-02

07106 Methane

|       | DDG#. BMIZU-UZ                    |                      |                | As Received         | As Received  |       |          |
|-------|-----------------------------------|----------------------|----------------|---------------------|--------------|-------|----------|
| CAT   |                                   |                      | As Received    | Method              | Limit of     |       | Dilution |
| No.   | Analysis Name                     | CAS Number           | Result         | Datection<br>Limit* | Quantitation | Units | Factor   |
|       | Analyte Name                      | RBSL (ug/l)          |                |                     |              |       |          |
|       | Xylenes                           | 10000                |                |                     |              |       |          |
|       | Benzene                           | 5                    |                |                     |              |       |          |
|       | Toluene                           | 1000                 |                |                     |              |       |          |
|       | Ethylbenzene                      | 700                  |                |                     |              |       |          |
|       | MTBE                              | 30                   |                |                     |              |       |          |
|       | Naphthalene                       | 100                  |                |                     |              |       |          |
|       | C5-C8 Aliphatics                  | 350                  |                |                     |              |       |          |
|       | C9-C12 Aliphatics                 | 1000                 |                |                     |              |       |          |
|       | C9-C10 Aromatics                  | 100                  |                |                     |              |       |          |
|       | The concentration for th          | ne following analyte | s exceeded the | RBSL:               |              |       |          |
|       | benzene, C5-C8 aliphatic          | s, C9-C10 aromatics  |                |                     |              |       |          |
| 07105 | Volatile Headspace<br>Hydrocarbon |                      |                |                     |              |       |          |

2,000.

200.

500.

This sample was field filtered for dissolved metals.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

74-82-8

#### Laboratory Chronicle

| CAT   |                                   | •                              |            | Analysis         |                               | Dilution |
|-------|-----------------------------------|--------------------------------|------------|------------------|-------------------------------|----------|
| No.   | Analysis Name                     | Method                         | Trial#     | Date and Time    | Analyst                       | Factor   |
| 01754 | Iron                              | SW-846 6010B                   | 1          | 12/01/2006 13:22 | Joanne M Gates                | 1        |
| 07058 | Manganese                         | SW-846 6010B                   | 1          | 12/01/2006 13:22 | Joanne M Gates                | 1        |
| 00219 | Nitrite Nitrogen                  | EPA 353.2                      | 1          | 11/28/2006 22:24 | Courtney A Shoff              | 1        |
| 00220 | Nitrate Nitrogen                  | BPA 353.2                      | 1          | 11/30/2006 01:51 | Brian C Veety                 | 1        |
| 00228 | Sulfate                           | BPA 300.0                      | 1          | 12/01/2006 00:42 | Ashley M Heckman              | 50       |
| 05869 | MT-VPH Waters                     | MA DEP VPH mod/SW-846<br>8021B | 1          | 11/30/2006 22:41 | K. Robert Caulfeild-<br>James | 1        |
| 07105 | Volatile Headspace<br>Hydrocarbon | SW-846 8015B modified          | <b>i</b> 1 | 12/04/2006 14:45 | Hai D Nguyen                  | 100      |
| 01848 | WW SW846 ICP Digest (tot          | SW-846 3005A                   | 1          | 12/01/2006 00:15 | Helen L Schaeffer             | 1        |

<sup>\*=</sup>This limit was used in the evaluation of the final result



2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. WW 4924312

DUP-MW-3 Grab Water Sample Site# 6625 Coulson Park, MT

Collected:11/27/2006 13:58 by RS Account Number: 11288

Submitted: 11/28/2006 09:35 ConocoPhillips
Reported: 12/07/2006 at 08:47 PO Box 2200

Discard: 01/07/2007 Bartlesville OK 74005

COUFD SDG#: BMT20-03FD

| CAT   |                               |            | As Rec | Devie: | As Received<br>Method | As Received<br>Limit of |       | Dilution |
|-------|-------------------------------|------------|--------|--------|-----------------------|-------------------------|-------|----------|
| No.   | Analysis Name                 | CAS Number | Result | 1      | Detection<br>Limit*   | Quantitation            | Units | Factor   |
| 05869 | MT-VPH Waters                 |            |        |        |                       |                         |       |          |
| 05877 | Total Purgeable Hydrocarbons  | n.a.       | 1,150. |        | 20.0                  | 100.                    | ug/1  | 1        |
| 05943 | Xylenes (total)               | 1330-20-7  | 1.59   | J      | 1.00                  | 10.0                    | ug/1  | 1        |
| 05993 | Benzene                       | 71-43-2    | 243.   |        | 0.5                   | 1.00                    | ug/1  | 1        |
| 05994 | Toluene                       | 108-88-3   | 2.46   | J      | 0.5                   | 5.00                    | ug/1  | 1        |
| 05995 | Ethylbenzene                  | 100-41-4   | 2.50   | J      | 0.5                   | 5.00                    | ug/l  | 1        |
| 05996 | Methyl t-butyl ether          | 1634-04-4  | N.D.   |        | 2.00                  | 5.00                    | ug/l  | 1        |
| 05997 | Naphthalene                   | 91-20-3    | 2.69   | J      | 1.00                  | 5.00                    | ug/1  | 1        |
| 05998 | C5-C8 Aliphatic Hydrocarbons  | n.a.       | 644.   |        | 50.0                  | 100.                    | ug/l  | 1        |
| 05999 | C9-C12 Aliphatic Hydrocarbons | n.a.       | 93.1   | J      | 20.0                  | 100.                    | ug/l  | 1        |
| 06002 | C9-C10 Aromatic Hydrocarbons  | n.a.       | 161.   |        | 20.0                  | 100.                    | ug/l  | 1        |
| 06003 | Unadjusted C5-C8 Aliphatics   | n.a.       | 890.   |        | 50.0                  | 100.                    | ug/1  | 1        |
| 06004 | Unadjusted C9-C12 Aliphatics  | n.a.       | 258.   |        | 20.0                  | 100.                    | ug/l  | 1.       |

The concentrations of individual target analytes and the surrogate standard have been subtracted from the concentrations of the appropriate hydrocarbon ranges as specified by the method.

Elution ranges for the target analytes are listed below: benzene, toluene, methyl t-butyl ether - C5-C8 aliphatics ethyl benzene, m,p-xylenes, o-xylene - C9-C12 aliphatics

Significant modifications to the method are listed below:
The surrogate standard for the VPH analysis is a,a,a-trifluorotoluene
for both the PID and FID. This compound elutes in the C5-C8 range.
1-Chloro-3-fluorobenzene is also used as an internal standard for the PID
and elutes in the C5-C8 range. The use of the internal standard,
surrogate standard that elute in the specified aliphatic or aromatic
ranges is a significant modification. The peak areas for these standards
are subtracted from the area for the specific ranges before the
concentrations are calculated. This process has been validated in our
laboratory and has produced acceptable data in the MA Round Robin study.
Sample preservation met requirements (pH </- 2).

The table below lists the risk based screening levels (RBSL) used by the state of Montana. The limits are from the Tier 1 Groundwater RBSLs and Standards table. These limits are posted on the Montana DEQ web site (www.deq.state.mt.us). The limits were last updated October 2003.

 Analyte Name
 RBSL (ug/1)

 Xylenes
 10000

 Benzene
 5

 Toluene
 1000

 Sthylbenzene
 700

<sup>\*=</sup>This limit was used in the evaluation of the final result



2425 New Holland Pike, PO Box 12425, Langaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.langasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. WW 4924312

DUP-MW-3 Grab Water Sample Site# 6625 Coulson Park, MT

Collected:11/27/2006 13:58 by RS Account Number: 11288

 Submitted:
 11/28/2006 09:35
 ConocoPhillips

 Reported:
 12/07/2006 at 08:47
 PO Box 2200

Discard: 01/07/2007 Bartlesville OK 74005

COUFD SDG#: BMT20-03FD

As Received As Received Method Limit of Dilution CAT As Received CAS Number Detection Quantitation Units Factor No. Analysis Name Result Limit\* MTBE 30 Naphthalene 100 C5-C8 Aliphatics 350 C9-C12 Aliphatics 1000 C9-C10 Aromatics 100

The concentration for the following analytes exceeded the RBSL: benzene, C5-C8 aliphatics, C9-C10 aromatics

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

#### Laboratory Chronicle

| CAT   |               | -                     |        | Aralysis         |                      | Dilution |
|-------|---------------|-----------------------|--------|------------------|----------------------|----------|
| No.   | Analysis Name | Method                | Trial# | Date and Time    | Analyst              | Factor   |
| 05869 | MT-VPH Waters | MA DEP VPH mod/SW-846 | 1      | 12/01/2006 00:04 | K. Robert Caulfeild- | 1        |
|       |               | 8021B                 |        |                  | James                |          |

<sup>\*=</sup>This limit was used in the evaluation of the final result



2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-866-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 4924313

CCP-MW-1 Grab Water Sample Site# 6625 Coulson Park, MT

Collected:11/27/2006 13:21

by RS

Account Number: 11288

Submitted: 11/28/2006 09:35

ConocoPhillips PO Box 2200

Reported: 12/07/2006 at 08:47 Discard: 01/07/2007

Bartlesville OK 74005

COU-1 SDG#: BMT20-04

|       |                                   |            |             | As Received         | As Received  |              |          |
|-------|-----------------------------------|------------|-------------|---------------------|--------------|--------------|----------|
| CAT   |                                   |            | As Received | Method              | Limit of     |              | Dilution |
| No.   | Analysis Name                     | CAS Number | Result      | Detection<br>Limit* | Quantitation | Units        | Factor   |
| 01754 | Iron                              | 7439-89-6  | N.D.        | 0.0522              | 0.200        | mg/1         | 1        |
| 07058 | Manganese                         | 7439-96-5  | 0.0987      | 0.00036             | 0.0050       | ${\sf mg/l}$ | 1        |
| 00219 | Nitrite Nitrogen                  | 14797-65-0 | N.D.        | 0.015               | 0.050        | mg/l         | 1        |
| 00220 | Nitrate Nitrogen                  | 14797-55-8 | 0.37        | 0.040               | 0.10         | mg/l         | 1        |
| 00228 | Sulfate                           | 14808-79-8 | 336.        | 15.0                | 50.0         | mg/l         | 50       |
| 07105 | Volatile Headspace<br>Hydrocarbon |            |             |                     |              |              |          |
| 07106 | Methane                           | 74-82-8    | N.D.        | 2.0                 | 5.0          | ug/l         | 1        |

This sample was field filtered for dissolved metals.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

#### Laboratory Chronicle

| CAT   |                                                 |                       |        | Analysis         |                   | Dilution      |
|-------|-------------------------------------------------|-----------------------|--------|------------------|-------------------|---------------|
| No.   | Analysis Name                                   | Method                | Trial# | Date and Time    | Analyst           | <b>Factor</b> |
| 01754 | Iron                                            | SW-846 6010B          | 1      | 12/01/2006 13:27 | Joanne M Gates    | 1             |
| 07058 | Manganese                                       | SW-846 6010B          | 1      | 12/01/2006 13:27 | Joanne M Gates    | 1             |
| 00219 | Nitrite Nitrogen                                | EPA 353.2             | 1      | 11/28/2006 22:25 | Courtney A Shoff  | 1.            |
| 00220 | Nitrate Nitrogen                                | EPA 353.2             | 1      | 11/30/2006 01:53 | Brian C Veety     | 1             |
| 00228 | Sulfate                                         | BPA 300.0             | 1      | 12/01/2006 00:57 | Ashley M Heckman  | 50            |
| 07105 | Volatile Headspace                              | SW-846 8015B modified | 1      | 11/30/2006 21:13 | Hai D Nguyen      | 1             |
| 01848 | Hydrocarbon<br>WW SW846 ICP Digest (tot<br>rec) | SW-846 3005A          | 1      | 12/01/2005 00:15 | Helen L Schaeffer | 1             |

<sup>\*=</sup>This limit was used in the evaluation of the final result



2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 \*717-656-2300 Fax: 717-656-2681 \* www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. WW 4924314

Trip Blank Water Sample Site# 6625 Coulson Park, MT

Collected:11/10/2006 Account Number: 11288

Submitted: 11/28/2006 09:35 ConocoPhillips
Reported: 12/07/2006 at 08:47 PO Box 2200

Discard: 01/07/2007 Bartlesville OK 74005

COUTB SDG#: BMT20-05TB\*

| CAT   |                               |            | As Received | As Received<br>Method | As Received<br>Limit of |       | Dilution |  |
|-------|-------------------------------|------------|-------------|-----------------------|-------------------------|-------|----------|--|
| No,   | Analysis Name                 | CAS Number | Result      | Detection<br>Limit*   | Quantitation            | Units | Factor   |  |
| 05869 | MT-VPH Waters                 |            |             |                       |                         |       |          |  |
| 05877 | Total Purgeable Hydrocarbons  | n.a.       | N.D.        | 20.0                  | 100.                    | ug/1  | 1        |  |
| 05943 | Xylenes (total)               | 1330-20-7  | N.D.        | 1.00                  | 10.0                    | ug/1  | 1        |  |
| 05993 | Benzene                       | 71-43-2    | N.D.        | 0.5                   | 1.00                    | ug/1  | 1        |  |
| 05994 | Toluene                       | 108-88-3   | N.D.        | 0.5                   | 5.00                    | ug/1  | 1        |  |
| 05995 | Ethylhenzene                  | 100-41-4   | N.D.        | 0.5                   | 5.00                    | ug/1  | 1        |  |
| 05996 | Methyl t-butyl ether          | 1634-04-4  | N.D.        | 2.00                  | 5.00                    | ug/l  | 1        |  |
| 05997 | Naphthalene                   | 91-20-3    | N.D.        | 1.00                  | 5.00                    | ug/1  | 1        |  |
| 05998 | C5-C8 Aliphatic Hydrocarbons  | n.a.       | N.D.        | 50.0                  | 100.                    | ug/1  | ı        |  |
| 05999 | C9-C12 Aliphatic Hydrocarbons | n.a.       | N.D.        | 20.0                  | 100.                    | ug/l  | 1        |  |
| 06002 | C9-C10 Aromatic Hydrocarbons  | n.a.       | N.D.        | 20.0                  | 100.                    | ug/1  | 1        |  |
| 06003 | Unadjusted C5-C8 Aliphatics   | n.a.       | N.D.        | 50.0                  | 100.                    | ug/1  | 1        |  |
| 06004 | Unadjusted C9-C12 Aliphatics  | n.a.       | N.D.        | 20.0                  | 100.                    | ug/1  | 1        |  |

The concentrations of individual target analytes and the surrogate standard have been subtracted from the concentrations of the appropriate hydrocarbon ranges as specified by the method.

Elution ranges for the target analytes are listed below: benzene, toluene, methyl t-butyl ether - C5-C8 aliphatics ethyl benzene, m,p-xylenes, o-xylene - C9-C12 aliphatics

Significant modifications to the method are listed below: The surrogate standard for the VPH analysis is a,a,a-trifluorotoluene for both the PID and FID. This compound elutes in the C5-C8 range. 1-Chloro-3-fluorobenzene is also used as an internal standard for the PID and elutes in the C5-C8 range. The use of the internal standard, surrogate standard that elute in the specified aliphatic or aromatic ranges is a significant modification. The peak areas for these standards are subtracted from the area for the specific ranges before the concentrations are calculated. This process has been validated in our laboratory and has produced acceptable data in the MA Round Robin study. Sample preservation met requirements (pH </- 2).

The table below lists the risk based screening levels (RBSL) used by the state of Montana. The limits are from the Tier 1 Groundwater RBSLs and Standards table. These limits are posted on the Montana DEQ web site (www.deq.state.mt.us). The limits were last updated October 2003.

| Analyte Name | RBSL (ug/l) |
|--------------|-------------|
| Xylenes      | 10000       |
| Benzene      | 5           |
| Toluene      | 1000        |
| Ethylbenzene | 700         |

<sup>\*=</sup>This limit was used in the evaluation of the final result



2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 \*717-656-2300 Fax: 717-656-2681 \* www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. WW 4924314

Trip Blank Water Sample Site# 6625 Coulson Park, MT

Collected:11/10/2006 Account Number: 11288

Submitted: 11/28/2006 09:35 ConocoPhillips Reported: 12/07/2006 at 08:47 PO Box 2200

Discard: 01/07/2007 Bartlesville OK 74005

COUTB SDG#: BMT20-05TB\*

As Received As Received CAT Limit of As Received Method Dilution No. Analysis Name Quantitation CAS Number Result Detection Unite Factor Limit\* MTBE 30 Naphthalene 100 C5-C8 Aliphatics 350 C9-C12 Aliphatics 1000 C9-Cl0 Aromatics 100

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

#### Laboratory Chronicle

| CAT   |               |                      |        |                  | Dilution                      |               |
|-------|---------------|----------------------|--------|------------------|-------------------------------|---------------|
| No.   | Analysis Name | Method               | Trial# | Date and Time    | Analyst                       | <b>Factor</b> |
| 05869 | MT-VPH Waters | MA DEP VPH mod/SW-84 | 6 1    | 11/30/2006 14:20 | K. Robert Caulfeild-<br>James | 1             |

<sup>\*=</sup>This limit was used in the evaluation of the final result



2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-666-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

#### Quality Control Summary

Client Name: ConocoPhillips Group Number: 1015627

Reported: 12/07/06 at 08:47 AM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

#### Laboratory Compliance Quality Control

| Analysis Name                                  | Blank<br>Result   | Blank<br>MDL**    | Blank<br>LOO                | Report<br>Units               | LCS<br>%REC | LCSD<br>*RBC | LCS/LCSD<br>Limite | RPD | RPD Max |
|------------------------------------------------|-------------------|-------------------|-----------------------------|-------------------------------|-------------|--------------|--------------------|-----|---------|
| Batch number: 06332105101A<br>Nitrite Nitrogen | Sample nu<br>N.D. | mber(s):<br>0.015 | <b>4924310-492</b><br>0.050 | 4311,492 <b>4</b> 313<br>mg/l | 97          |              | 90-110             |     |         |
| Batch number: 063340023A<br>Methane            | Sample nu<br>N.D. | mber(s):<br>2.0   | 4924310-492<br>5.0          | 4311,4924313<br>ug/l          | 98          |              | 80-120             |     |         |
| Batch number: 06334106101B<br>Nitrate Nitrogen | Sample nu<br>N.D. | mber(s):<br>0.040 | 4924310-492<br>0.10         | 4311,4924313<br>mg/l          | 103         |              | 89-110             |     |         |
| Batch number: 06334196102A<br>Sulfate          | Sample nu<br>N.D. | mber(s):<br>0.30  | 4924310-492<br>1.0          | 4311,4924313<br>mg/l          | 102         |              | 89-110             |     |         |
| Batch number: 06334A01A                        | Sample ni         | mber(s):          | 4924310-492                 | 4312,4924314                  |             |              |                    |     |         |
| Total Purgeable Hydrocarbons                   | N.D.              | 20.0              | 100.                        | ug/l                          | 91          | 93           | 70-130             | 3   | 50      |
| Xylenes (total)                                | N.D.              | 1.00              | 10.0                        | ug/l                          | 90          | 92           | 70-130             | 3   | 50      |
| Benzene                                        | N.D.              | 0.5               | 1.00                        | ug/l                          | 86          | 88           | 70-130             | 2   | 50      |
| Toluene                                        | N.D.              | 0.5               | 5.00                        | ug/l                          | 8.8         | 90           | 70-130             | 3   | 50      |
| Ethylbenzene                                   | N.D.              | 0.5               | 5.00                        | ug/l                          | 89          | 92           | 70-130             | 3   | 50      |
| Methyl t-butyl ether                           | N.D.              | 2.00              | 5.00                        | ug/l                          | 88          | 89           | 70-130             | ۵   | 50      |
| Naphthalene                                    | N.D.              | 1.00              | 5.00                        | ug/l                          | 82          | 86           | 70-130             | 5   | 50      |
| C5-C8 Aliphatic Hydrocarbons                   | N.D.              | 50.0              | 100.                        | ug/l                          | 101         | 103          | 70-130             | 2   | 50      |
| C9-C12 Aliphatic Hydrocarbons                  | N.D.              | 20.0              | 100.                        | ug/l                          | 85          | 89           | 70-130             | 5   | 50      |
| C9-C10 Arcmatic Hydrocarbons                   | N.D.              | 20.0              | 100.                        | ug/l                          | 90          | 93           | 70-130             | 3   | 50      |
| Unadjusted C5-C8 Aliphatics                    | N.D.              | 50.0              | 100.                        | ug/1                          | 94          | 96           | 70-130             | 2   | 50      |
| Unadjusted C9-Cl2 Aliphatics                   | N.D.              | 20.0              | 100.                        | ug/l                          | 86          | 91           | 70-130             | 4   | 50      |
| Batch number: 063351848001                     | Sample nu         | ımber(s):         | 4924310-492                 | 4311,4924313                  |             |              |                    |     |         |
| Iron                                           | N.D.              | 0.0522            | 0.200                       | mg/l                          | 96          |              | 90-112             |     |         |
| Manganese                                      | N.D.              | 0.0003            | 6 0.0050                    | mg/l                          | 100         |              | 90-110             |     |         |

#### Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

|                                                | MS            | MgD          | MS/MSD                  |              | RPD          | BKG                   | DUP                     | DUD              | Dup<br>RPD |
|------------------------------------------------|---------------|--------------|-------------------------|--------------|--------------|-----------------------|-------------------------|------------------|------------|
| Analysis Name                                  | %REC          | *REC         | <u>Limits</u>           | RPD          | MAX          | Conc                  | Conc                    | RPD              | Max_       |
| Batch number: 06332105101A<br>Nitrite Nitrogen | Sample<br>101 | number       | (8): 4924310<br>90-110  | -492431      | 1,4924       | 313 UNSPK:<br>0.015 J | P924335 BKG:<br>0.015 J | P924335<br>0 (1) | 20         |
| Batch number: 063340023A<br>Methane            | Sample<br>90  | number<br>95 | (s): 4924310-<br>63-124 | -492431<br>5 | 1,4924<br>20 | 313 UNSPK:            | 4924310                 |                  |            |
| Batch number: 06334106101B                     | Sample        | number       | (a): 4924310            | -492431      | 1,4924       | 313 UNSPK:            | P921637 BKG             | : P921637        |            |

#### \*- Outside of specification

- \*\*-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The background result was more than four times the spike added.



2425 New Holland Pike, PQ Box 12425, Langaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

#### Quality Control Summary

Client Name: ConocoPhillips Reported: 12/07/06 at 08:47 AM Group Number: 1015627

#### Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

|                                                 | MS                   | MSD                  | ms/msd                            |                  | RPD                        | BKG                          | DUP                            | DUP               | Dup<br>RPD |
|-------------------------------------------------|----------------------|----------------------|-----------------------------------|------------------|----------------------------|------------------------------|--------------------------------|-------------------|------------|
| Analysis Name<br>Nitrate Nitrogen               | *REC<br>104          | *REC                 | <u>Limits</u><br>90-110           | RPD              | MAX                        | <u>Conc</u><br>N.D.          | Conc<br>N.D.                   | RPD<br>200* (1)   | Max2       |
| Batch number: 06334196102A<br>Sulfate           | Sample               | number               | (s): 4924310-<br>90-110           | 492431           | .1,4924                    | 313 UNSPK:<br>20.7           | P923432 BKG:<br>19.4           | P923432<br>7* (1) | 3          |
| Batch number: 063351848001<br>Iron<br>Manganese | Sample<br>107<br>103 | number<br>106<br>104 | (s): 4924310-<br>75-125<br>75-125 | 492431<br>0<br>1 | 1, <b>4924</b><br>20<br>20 | 313 UNSPK:<br>1.14<br>0.0767 | P924299 BKG:<br>1.24<br>0.0822 | P924299<br>8<br>7 | 20<br>20   |

#### Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: Volatile Headspace Hydrocarbon Batch number: 063340023A Propene

| 4924310                                                         | 93                                                                 |                                   |  |
|-----------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------|--|
| 4924311                                                         | 98                                                                 |                                   |  |
| 4924313                                                         | 57                                                                 |                                   |  |
| Blank                                                           | 90                                                                 |                                   |  |
| LCS                                                             | 82                                                                 |                                   |  |
| MS                                                              | 90                                                                 |                                   |  |
| MSD                                                             | 96                                                                 |                                   |  |
| Limits:                                                         | 38-129                                                             |                                   |  |
|                                                                 | Name: MT-VPH Waters er: 06334A01A Trifluorotoluene-P               | Trifluorotoluere-F                |  |
| Batch numk                                                      | er: 06334A01A<br>Trifluorotoluene-P                                | Trifluorotoluene-F                |  |
| Batch numb                                                      | er: 06334A01A<br>Trifluorotolueme-P                                | 109                               |  |
| Batch numb<br>4924310<br>4924311                                | er: 06334A01A<br>Trifluorotoluene-P<br>95<br>102                   | 109<br>132*                       |  |
| Batch numk<br>4924310<br>4924311<br>4924312                     | er: 06334A01A<br>Trifluorotoluene-P<br>95<br>102<br>99             | 109                               |  |
| Batch numb<br>4924310<br>4924311<br>4924312<br>4924314          | er: 06334A01A<br>Trifluorotoluene-P<br>95<br>102<br>99<br>93       | 109<br>132*                       |  |
| Batch numb<br>4924310<br>4924311<br>4924312<br>4924314          | er: 06334A01A<br>Trifluorotoluene-P<br>95<br>102<br>99             | 109<br>132*<br>133*               |  |
| Batch numb<br>4924310<br>4924311<br>4924312<br>4924314<br>Blank | er: 06334A01A<br>Trifluorotoluene-P<br>95<br>102<br>99<br>93       | 109<br>132*<br>133*<br>105        |  |
| Batch numk                                                      | er: 06334A01A<br>Trifluorotoluene-P<br>95<br>102<br>99<br>93<br>95 | 109<br>132*<br>133*<br>105<br>106 |  |

#### \*- Outside of specification

- \*\*-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The background result was more than four times the spike added.

## ConocoPhillips Analysis Request/Chain of Custody

| Lancaster                                | 051            | 138                                   |               | -          |              | Acc      | <b>48</b> : , | <u>// 2</u>                                      | 81          | <u>}                                    </u> | Q           | toup     | • <u>L</u> C | 756                   | <u>.27</u> a          | mple #:       | 724.                                               | <u> 30 -</u>                                | <u> 14</u>   |
|------------------------------------------|----------------|---------------------------------------|---------------|------------|--------------|----------|---------------|--------------------------------------------------|-------------|----------------------------------------------|-------------|----------|--------------|-----------------------|-----------------------|---------------|----------------------------------------------------|---------------------------------------------|--------------|
| Laboratories                             |                |                                       |               |            |              | 1        | Ana           | yeas                                             | Req         | 444                                          | ted :       |          | al runt      | er of cor<br>h eneign | dainers in the<br>is. | SCR#:_        | <u>35</u>                                          | 841                                         | <del>\</del> |
| Star #: 6625 WNO#:                       | -              |                                       |               |            | Matri        | _        | $\vdash$      | _                                                | _           | Pre                                          | 5014        | allor    | Code         |                       |                       | - P           | reserva                                            | tive Cod                                    | 89           |
| Site Address: Coulson Park               | INT            |                                       |               |            |              |          | MT-VPH 2226)  | .+.                                              | <del></del> | -                                            |             | Н        | ┿            | ┿╂                    | + +                   | — н≖нс        |                                                    | T = Thios                                   |              |
|                                          |                | <del></del>                           | <del></del>   | ⊢          | Υ—           | _        | <b>7</b> 6    | עב                                               | 뿧           | X                                            |             |          | -            |                       | ŀ                     | N=H<br>8=H₂   |                                                    | <ul><li>B = NaOt</li><li>O = Othe</li></ul> |              |
| ConocoPhilips PM: Lilliam Mudoon Con     | ipany Code:    | Al a -                                | <del></del> - | .          | 2 3          |          | ΓĒ            | ᇫ                                                | Ž           | 3                                            |             |          | - 1          |                       |                       |               |                                                    |                                             |              |
| Core Work Order#: 6625MAK003 T           | otal Lab Budg  | et 467                                | <u> </u>      |            | Possible     | Ιí       | K.Ľ           | H                                                | ₹           | 쉬                                            |             |          |              | 1. 1                  |                       |               |                                                    |                                             |              |
| Consultant/Office: Tetra Tech            | <u> </u>       |                                       | <del></del>   |            | hã           | ı        | F             |                                                  | 13          | H                                            | ឤ           | N        |              |                       | 1 1                   |               |                                                    |                                             |              |
| Consultant Prj. Mgr. Dave Toler          |                |                                       |               | ."         | <del></del>  | 1        | I₽            | W                                                | <b>K</b> /  | 旬                                            | 5           |          |              | 11                    | 1                     |               |                                                    |                                             |              |
| Consultant Phone #: 406 - 248 - 916 /    | Fax #: -2      | 48-926                                | ? 7           | 4          |              | Ы        | J             | سا!                                              | K           | H.                                           |             |          |              | 11                    | 1                     |               |                                                    |                                             |              |
| sempter Ryan Sparhawk                    |                |                                       | <b>l</b> 1    | ▋          | Į.           |          | ß             | 3 13                                             | 图           | (ET-10017)                                   | 3           | 1        | - [          | 11                    | 1 1                   | 1             |                                                    |                                             |              |
| 777                                      | Date           | Time                                  | ╽╸            | [          | ě            | 6        | 1             | 七                                                | 8           | 逐                                            | 8           |          | .            |                       |                       |               |                                                    |                                             |              |
| Sample Identification                    | Collected      | Collected                             | <b>g</b>      | <u>}</u> 3 | ₹            | 8        | Ш             |                                                  | <u>K</u>    | 1                                            | 9           |          |              |                       |                       | Remark        | 8                                                  |                                             |              |
| Mw-I                                     | 11-27-0        | 1431                                  | 9             |            | x            |          | X             |                                                  |             |                                              |             | X        |              |                       |                       | 9 50          | fles                                               |                                             |              |
| Mw-3                                     | H-27-06        | 1358                                  | C7            | 1          | X            |          | X             | ٩k                                               | ×           | * .                                          | <b> </b>    | X        |              |                       |                       | 9 60          | Ales                                               |                                             | _ "-         |
| Dus-MW-3                                 | 11-27-06       |                                       | G             | T          | K            | П        | XX            | - ×                                              | <b>.</b>    | II.                                          | *           | Ø        | ,7"          | 1                     | T                     |               | Hles                                               |                                             |              |
| CCP-MW-I                                 | [1-27-06       |                                       | G             | 1          | ×            | $I^{-}$  |               | بالا                                             | L           | k                                            | ×           | Z        | _            |                       | 1 1                   | 6 b           |                                                    |                                             |              |
|                                          | 11.51.5        | 7                                     | H             | ╅          | Ė            | П        | Н             | <del>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</del> | ╬           | (t                                           | Н           | Н        | 十            | † †                   | 1 1                   |               | 111000                                             | <del></del>                                 |              |
|                                          |                |                                       | H             | +          | -            | H        | H             | ┿                                                | H           | Ė                                            | Н           | Н        | ╅            | † †                   | + +                   | +             |                                                    | •                                           |              |
| Tour Black                               | -              |                                       | H             | ╁          | T            | ╁        | H             | ╁                                                | t           | ┢                                            | -           | $\vdash$ | ┪            | ╁                     | 1                     | 16#           | <u>_</u>                                           |                                             |              |
| · cods blace                             | <del> </del> - |                                       | ╁┼            | ╌          | +>-          | ┿        | H             | 十                                                | ╁           | ┢                                            | $\vdash$    | Н        | ╅            | ++                    | +                     |               | <del>.                                      </del> |                                             |              |
| Temp Blank Trip Blank                    | 16-10-06       |                                       |               |            | X            | 2        |               |                                                  |             | <u>.</u>                                     |             |          |              | <u> </u>              |                       | 7 2pt         |                                                    |                                             |              |
| Turnsround Time Requested in Business Do | tys (TAT) (ple | ese circle);                          | ر ا           | Reiling    | Liet 1       | W:       | - 1           | //                                               |             | 1                                            | 12          | 30       | 123          | Rece                  | Ned by:               | Szzika        | 4                                                  | Dete                                        | Пп           |
| STO-TAT 6 day 4                          | B hour         |                                       | 7             |            |              | <u> </u> | <u> </u>      | 11                                               |             |                                              | _           | <u> </u> |              | Rece                  | - Yen                 | <u> </u>      |                                                    | / <del>/-Zo</del>                           |              |
| 24 hoer other                            |                | _                                     |               |            | Heriad<br>GA |          | بار ج         | <b>.</b>                                         | 上           | _                                            |             | 27       |              |                       | IMMED BY              |               |                                                    | Dete                                        | Three        |
|                                          | <del>-</del>   |                                       |               | PL II      | Marked       | J        |               | <u>~</u>                                         | •           |                                              | +-          |          | Time         |                       | lved by:              |               |                                                    | Debe                                        | Time         |
| Reporting Requirements (pieces circle)   |                |                                       |               |            |              | <u>~</u> |               |                                                  |             |                                              | Ľ           |          |              |                       |                       |               |                                                    | 1                                           | 12025        |
| ,                                        | ew Data        | Diskette                              | ſ             | Relinq     | ulched       | by:      |               |                                                  |             |                                              | -           | **       | Time         | Rece                  | Med by                | a             | 0                                                  | VICE                                        | /E 33/       |
| NY ASP Cut. B Full Type I O              | ther           | · · · · · · · · · · · · · · · · · · · |               | Relinc     | uished       | by C     | OMM           | rojai (                                          | errie       | r;                                           |             |          | _            | T                     | 10                    |               | 1.                                                 | !                                           |              |
|                                          |                |                                       |               | •          |              | -        |               | ~ ~                                              |             | _Oth                                         | <b>#</b> 1_ |          |              | Ter                   | nperature L           | pon Receipt . | 41                                                 | 4                                           | C,           |

# ATTACHMENT C QA/QC EVALUATION

#### QUALITY ASSURANCE/QUALITY CONTROL EVALUATION NOVEMBER 2006 GROUNDWATER MONITORING EVENT COULSON PPARK 1976 SEMINOE PIPE LINE RELEASE, BILLINGS, MONTANA

Quality control/quality assurance (QA/QC) evaluation includes investigation of the adherence to standard procedures for shipping and analyzing as outlined by the Massachusetts Department of Environmental Protection (MDEP, 1998) as well as discussion of the precision of analyses.

Handling of samples was performed in accordance with Maxim SOPs for sampling and shipping, which is aligned with the MDEP criteria. Samples were collected using proper bottles and preservatives, shipped on ice and received within the temperature and pH ranges specified. Approximately 19 hours after sampling, samples were received by Lancaster in satisfactory condition, within the specified temperature range of  $2^{\circ}C_{\pm}$ , and all samples were adequately preserved to a pH of  $\leq$  2. All analyses were performed within the required holding time for the VPH procedure.

A trip blank was shipped with the groundwater samples and analyzed for VPH using the MDEP Method. The trip blank did not contain detectable concentrations of VPH analytes.

Maxim collected a duplicate sample from well MW-3 for analysis of VPH. Evaluation of duplicate samples was done using Relative Percent Difference (RPD) following method criteria specified by the MDEP (MDEP, 1998). RPD is defined as the difference between the natural and duplicate results divided by the mean. For VPH analyses, results are considered to be estimates when the RPD is greater than 50 percent (MDEP, 1998). In the event that an analyte is detected in only one of the natural-duplicate pair, the LOQ for concentrations below detection is used in the QA/QC evaluation. All results meet the RPD criterion of 50 percent between the natural and duplicate samples and must be considered accurate. The internal QA/QC evaluation conducted by Lancaster indicated that all QC was compliant for the Coulson Park samples.